已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程.

x2-=1 (x≤-1)


解析:

如圖所示,設(shè)動圓M與圓C1及圓C2分別外切于點A和點B,根據(jù)兩圓外切的充要條件,得

|MC1|-|AC1|=|MA|,

|MC2|-|BC2|=|MB|.

因為|MA|=|MB|,

所以|MC2|-|MC1|=|BC2|-|AC1|=3-1=2.

這表明動點M到兩定點C2,C1的距離之差是常數(shù)2.

根據(jù)雙曲線的定義,動點M的軌跡為雙曲線的左支(點M到C2的距離大,到C1的距離。,這里a=1,c=3,則b2=8,設(shè)點M的坐標為(x,y),其軌跡方程為x2-=1 (x≤-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xoy中,已知圓C1:(x-1)2+y2=25和圓C2:(x-4)2+(y-5)2=16
(1)若直線l1經(jīng)過點P(2,-1)和圓C1的圓心,求直線l1的方程;
(2)若點P(2,-1)為圓C1的弦AB的中點,求直線AB的方程;
(3)若直線l過點A(6,0),且被圓C2截得的弦長為4
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)如圖,在平面直角坐標系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x-3)2+(y-4)2=1
(1)若過點C1(-1,0)的直線l被圓C2截得的弦長為
65
,求直線l的方程;
(2)設(shè)動圓C同時平分圓C1的周長、圓C2的周長.
①證明:動圓圓心C在一條定直線上運動;
②動圓C是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2外切,則動圓圓心M的軌跡方程為
x2-
y2
8
=1(x<0)
x2-
y2
8
=1(x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省高二上學(xué)期10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.

(1)判斷兩圓的位置關(guān)系;

(2)求直線m的方程,使直線m被圓C1截得的弦長為4,與圓C截得的弦長是6.

 

查看答案和解析>>

同步練習(xí)冊答案