已知函數(shù)f(x)=a-是偶函數(shù),a為實常數(shù).
(1)求b的值;
(2)當a=1時,是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.
(3)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實數(shù)a的取值范圍.
(1)由已知,可得f(x)=a-的定義域為D=(-∞,)∪
(,+∞).
又y=f(x)是偶函數(shù),故定義域D關于原點對稱.
于是,b=0(否則,當b≠0時,有-∈D且D,即D必不關于原點對稱).
又對任意x∈D,有f(x)=f(-x),可得b=0.
因此所求實數(shù)b=0.
(2)由(1),可知f(x)=a-(D=(-∞,0)∪(0,+∞)).
觀察函數(shù)f(x)=a-的圖象,可知:f(x)在區(qū)間(0,+∞)上是增函數(shù),
又n>m>0,
∴y=f(x)在區(qū)間[m,n]上是增函數(shù).
因y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n].
∴有,
即方程1-=x,也就是2x2-2x+1=0有兩個不相等的正根.
∵Δ=4-8<0,∴此方程無解.
故不存在正實數(shù)m,n滿足題意.
(3)由(1),可知f(x)=a-(D=(-∞,0)∪(0,+∞)).
觀察函數(shù)f(x)=a-的圖象,
可知:f(x)在區(qū)間(0,+∞)上是增函數(shù),
f(x)在區(qū)間(-∞,0)上是減函數(shù).
因y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],故必有m、n同號.
①當0<m<n時,f(x)在區(qū)間[m,n]上是增函數(shù),有,即方程x=a-,也就是2x2-2ax+1=0有兩個不相等的正實數(shù)根,因此,解得a>(此時,m、n(m<n)取方程2x2-2ax+1=0的兩根即可).
②當m<n<0時,f(x)在區(qū)間[m,n]上是減函數(shù),有,化簡得(m-n)a=0,解得a=0(此時,m、n(m<n)的取值滿足mn=,且m<n<0即可).
綜上所述,所求實數(shù)a的取值范圍是a=0或a>.
科目:高中數(shù)學 來源:2012-2013學年江西省南昌市高一5月聯(lián)考數(shù)學卷(解析版) 題型:解答題
已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設k>1,解關于x的不等式f(x)< .
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學試卷(解析版) 題型:解答題
(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省萊蕪市高三上學期10月測試理科數(shù)學 題型:解答題
(本小題滿分l2分)
已知函數(shù)f(x)=a-
(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若f(x)<2x在(1,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省十二校高三第一次聯(lián)考數(shù)學文卷 題型:解答題
( (本小題滿分13分)
已知函數(shù)f(x)=(a-1)x+aln(x-2),(a<1).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆黑龍江省高一期末考試文科數(shù)學 題型:解答題
(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函數(shù)的定義域 (2)討論函數(shù)f(X)的單調(diào)性
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com