滿足z是實(shí)數(shù),且z+3的實(shí)部與虛部是相反數(shù)的虛數(shù)z是否存在?若存在,求出虛數(shù)z,若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:設(shè)虛數(shù)zxyi(x,yR,且y≠0).

  則

  由已知,得

  ∵y≠0,∴

  解得

  ∴存在虛數(shù)z=-1-2i或z=-2-i滿足以上條件.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求同時(shí)滿足下列兩個(gè)條件的所有復(fù)數(shù)z:
①z+
10
z
是實(shí)數(shù),且1<z+
10
z
≤6;
②z的實(shí)部和虛部都是整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z是虛數(shù),滿足ω=z+
1
z
是實(shí)數(shù),且-1<ω<2.
(1)求|z|的值及z的實(shí)部的取值范圍;
(2)設(shè)u=
1-z
1+z
.求證:u是純虛數(shù);
(3)求ω-u2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足是實(shí)數(shù),且Z+3的實(shí)部與虛部互為相反數(shù)的虛數(shù)Z是否存在?若存在,求出虛數(shù)Z;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)z是虛數(shù),滿足ω=z+
1
z
是實(shí)數(shù),且-1<ω<2.
(1)求|z|的值及z的實(shí)部的取值范圍;
(2)設(shè)u=
1-z
1+z
.求證:u是純虛數(shù);
(3)求ω-u2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案