設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.
【答案】分析:(Ⅰ)函數(shù)在切點處的導(dǎo)數(shù)值為切線斜率,切點在切線上,列方程解.
(Ⅱ)導(dǎo)函數(shù)大于0對應(yīng)區(qū)間是單調(diào)遞增區(qū)間;導(dǎo)函數(shù)小于0對應(yīng)區(qū)間是單調(diào)遞減區(qū)間.
解答:解:(Ⅰ)求導(dǎo)得f′(x)=3x2-6ax+3b.
由于f(x)的圖象與直線12x+y-1=0相切于點(1,-11),
所以f(1)=-11,f′(1)=-12,即:
1-3a+3b=-11解得:a=1,b=-3.
3-6a+3b=-12
(Ⅱ)由a=1,b=-3得:f′(x)=3x2-6ax+3b=3(x2-2x-3)=3(x+1)(x-3)
令f′(x)>0,解得x<-1或x>3;
又令f′(x)<0,解得-1<x<3.
故當(dāng)x∈(-∞,-1)時,f(x)是增函數(shù),
當(dāng)x∈(3,+∞)時,f(x)也是增函數(shù),
但當(dāng)x∈(-1,3)時,f(x)是減函數(shù).
點評:考查導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.