10.已知函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)+ω (ω>0)的部分圖象如圖所示,則下列選項(xiàng)判斷錯(cuò)誤的是(  )
A.f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x)B.f(x)+f(-x-$\frac{π}{3}$)=1C.f($\frac{7π}{3}$)=2D.|MN|=π

分析 利用正弦函數(shù)的圖象求得函數(shù)的解析式,再利用正弦函數(shù)的圖象和性質(zhì),逐一判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.

解答 解:根據(jù)函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)+ω (ω>0)的部分圖象,可得1+ω=2,∴ω=1,f(x)=sin(x+$\frac{π}{6}$)+1.
當(dāng)x=$\frac{π}{3}$時(shí),f(x)=2,為最大值,故f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,故有f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x),故A正確;
由于f(x)+f(-x-$\frac{π}{3}$)=sin(x+$\frac{π}{6}$)+1+[sin(-x-$\frac{π}{3}$+$\frac{π}{6}$)+1]=2+sin(x+$\frac{π}{6}$)-sin(x+$\frac{π}{6}$)=2,故B錯(cuò)誤;
由于f($\frac{7π}{3}$)=sin($\frac{7π}{3}$+$\frac{π}{6}$)+1=2,故C正確;
由于|MN|=$\frac{T}{2}$=π,故D正確,
故選:B.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性,正弦函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平面向量$\overrightarrow{a}$=(k,3),$\overrightarrow$=(1,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)k=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.有三種卡片分別寫有數(shù)字1,10,100,從上述三種卡片中選取若干張,使得這些卡片之和為m(m為正整數(shù)).考慮不同的選法種數(shù),例如m=11時(shí)有兩種選法:“一張卡片寫有1,另一張寫有10”或“11張寫有1的卡片”.
(1)若m=100,直接寫出選法種數(shù);
(2)設(shè)n為正整數(shù),記所選卡片的數(shù)字和為100n的選法種數(shù)為an,當(dāng)n≥2時(shí),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD=AD=2,△PAC為正三角形,E為PA的中點(diǎn),F(xiàn)為線段BC上任意一點(diǎn)(不含端點(diǎn)).
(1)證明:平面CDE⊥平面AFP;
(2)是否存在點(diǎn)F,使得三棱錐F-PAB體積為$\frac{2}{3}$,若存在,請(qǐng)確定點(diǎn)F的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)sin(\frac{π}{4}+α)=-\frac{3}{10}$,則tanα=( 。
A.$\frac{1}{2}$B.2C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.學(xué)校為了了解高三學(xué)生每天回歸教材自主學(xué)習(xí)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天回歸教材自主學(xué)習(xí)的時(shí)間超過5小時(shí)的學(xué)生非常有可能在高考中締造神奇,我們將他(她)稱為“考神”,否則為“非考神”,調(diào)查結(jié)果如表:
考神非考神合計(jì)
男生262450
女生302050
合計(jì)5644100
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有60%的把握認(rèn)為“考神”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“考神”和“非考神”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“考神”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知等邊△ABC的邊長(zhǎng)為2,圓A的半徑為1,PQ為圓A的任意一條直徑.
(1)判斷$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否會(huì)隨點(diǎn)P的變化而變化,請(qǐng)說明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,若${a^2}-{b^2}=\sqrt{3}bc$,sinC=$2\sqrt{3}sinB$,則A等于( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求滿足下列條件的解析式
(1)已知f($\frac{2}{x}+1$)=lgx,求f(x);
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x);

查看答案和解析>>

同步練習(xí)冊(cè)答案