已知,平行四邊形ABCD中,AB=4,AD=2
2
,∠BAD=45°,M是BC中點(diǎn),將平行四邊形沿EF折疊,使A與M重合,求折痕EF的長(zhǎng)度以及△AEM的面積.
考點(diǎn):相似三角形的判定
專(zhuān)題:立體幾何
分析:若將平行四邊形沿EF折疊,使A與M重合,則折痕EF是線段AM的垂直平分線,延長(zhǎng)AM交DC的延長(zhǎng)線與G點(diǎn),過(guò)M作AB的垂線,垂足為H,利用三角形相似和勾股定理可求出OE的長(zhǎng)度進(jìn)而得到EF的長(zhǎng)度,求出AE的長(zhǎng)度后,代入三角形面積公式,可得△AEM的面積.
解答: 解:延長(zhǎng)AM交DC的延長(zhǎng)線與G點(diǎn),過(guò)M作AB的垂線,垂足為H,
,
∵AB=4,AD=2
2
,∠BAD=45°,M是BC中點(diǎn),
∴BM=
2
,BH=MH=1,
則AM=
(4+1)2+1
=
26
,
∵折痕EF是線段AM的垂直平分線,可得:
AO=
26
2
,△AOE∽△AHM,
∴OE=
MH
AH
•AO
=
26
10
,
∵△AOE∽△COF且相似比為1:3,
故OF=3OE,則EF=4OE=
2
26
5
,
又由AE=
AO
AH
•AM
=
13
5
,
故△AEM的面積S=
1
2
AE•MH=
13
10
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是三角形相似的判斷與應(yīng)用,三角形面積公式,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(
x
)
的定義域?yàn)閇0,4],則函數(shù)g(x)=f(x+2)的定義域?yàn)椋ā 。?/div>
A、[0,2]B、[-2,0]
C、[2,4]D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,k∈Z,且方程mx2-kx+2=0在(0,1)上有兩個(gè)不同的實(shí)數(shù)根,則m+k的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是不同的直線,α,β是不同的平面,則以下四個(gè)命題中錯(cuò)誤的有
 

①若m⊥α,n⊥α,則m∥n;  
②若α⊥β,m∥α,則m⊥β;
③若m⊥α,m⊥n,則n∥α;
④若n⊥α,n⊥β,則α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+
1
2
bx2-(a+b)x
,
(1)當(dāng)a=1,b=0時(shí),求f(x)的最大值;
(2)當(dāng)b=1時(shí),設(shè)α,β是f(x)的兩個(gè)極值點(diǎn),且α<β,β∈(1,e](其中e為自然對(duì)數(shù)的底數(shù)).求證:對(duì)任意的x1,x2∈[α,β],|f(x1)-f(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-3)2+(y-4)2=4,直線l過(guò)定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2
2
,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P到點(diǎn)F(2,0)的距離與到直線l:x=
1
2
的距離之比為2.
(1)求點(diǎn)P的軌跡C的方程;
(2)直線l的方程為x+y-2=0,l與曲線C交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,前n項(xiàng)和滿(mǎn)足S5=10,S10=50,則S15=( 。
A、210B、250
C、310D、350

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)公差不為0的等差數(shù)列{an}的首項(xiàng)為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
16
(1+an)(5+an)
,n為奇數(shù)
15×22n-3,n為偶數(shù)
,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案