9.已知拋物線C:y2=2px(p>0)上一點(diǎn)P(2,t)到焦點(diǎn)F的距離為3.
(1)求拋物線C的方程;
(2)過點(diǎn)F作兩條互相垂直的直線l1,l2,設(shè)l1與拋物線C交于A、B兩點(diǎn),l2與拋物線C交于D、E兩點(diǎn),求|AF|•|FB|+|EF|•|FD|的最小值.

分析 (1)運(yùn)用拋物線的定義可得2+$\frac{p}{2}$=3,解方程可得p,即可得到所求方程;
(2)可得F(1,0),直線AB,ED的斜率存在且不為0,可設(shè)直線AB的方程為x=ty+1,代入拋物線的方程,運(yùn)用韋達(dá)定理和拋物線的定義,化簡可得|AF|•|FB|=4(t2+1),同理可將t換為$\frac{1}{t}$,可得|EF|•|FD|=4($\frac{1}{{t}^{2}}$+1),再由基本不等式即可得到所求最小值.

解答 解:(1)拋物線C:y2=2px(p>0)的焦點(diǎn)為($\frac{p}{2}$,0),
準(zhǔn)線方程為x=-$\frac{p}{2}$,
由拋物線的定義可得P(2,t)到焦點(diǎn)F的距離為3,
即為P到準(zhǔn)線的距離為2+$\frac{p}{2}$=3,解得p=2,
即有拋物線的方程為y2=4x;
(2)可得F(1,0),直線AB,ED的斜率存在且不為0,
可設(shè)直線AB的方程為x=ty+1,
代入拋物線的方程可得y2-4ty-4=0,
設(shè)A(x1,y1),B(x2,y2),
可得y1+y2=4t,y1y2=-4,
則|AF|•|FB|=(x1+1)(x2+1)=(ty1+2)(ty2+2)
=t2y1y2+2t(y1+y2)+4=-4t2+8t2+4=4(t2+1),
同理可將t換為$\frac{1}{t}$,可得|EF|•|FD|=4($\frac{1}{{t}^{2}}$+1),
即有|AF|•|FB|+|EF|•|FD|=4(t2+$\frac{1}{{t}^{2}}$+2)≥4(2$\sqrt{{t}^{2}•\frac{1}{{t}^{2}}}$+2)=16,
當(dāng)且僅當(dāng)t2=$\frac{1}{{t}^{2}}$,即t=±1時(shí),取得等號.
則|AF|•|FB|+|EF|•|FD|的最小值為16.

點(diǎn)評 本題考查拋物線的定義、方程和性質(zhì),考查直線方程和拋物線的方程聯(lián)立,運(yùn)用韋達(dá)定理,以及基本不等式求最值,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3-3x2-9x+1(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)-2a+1≥0對?x∈[-2,4]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin(πx+$\frac{π}{4}$)和函數(shù)g(x)=cos(πx+$\frac{π}{4}$)在區(qū)間[-$\frac{9}{4}$,$\frac{3}{4}$]上的圖象交于A,B,C三點(diǎn),則△ABC的面積是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\frac{5\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系中xOy中,已知曲線C1:$\left\{\begin{array}{l}x=1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ=$\frac{a}{{cos(θ-\frac{π}{4})}}$,若射線θ=ϕ,θ=ϕ+$\frac{π}{4}$,θ=Φ-$\frac{π}{4}$,θ=Φ+$\frac{π}{2}$與曲線C1分別交于(異于極點(diǎn)O)的四點(diǎn)A,B,C,D
(1)若曲線C1關(guān)于曲線C2對稱,求a的值,并求曲線C1的極坐標(biāo)方程;
(2)求|OA|•|OC|+|OB|•|OD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和Sn與an之間滿足an=$\frac{2{S}_{n}^{2}}{{2S}_{n}-1}$(n≥2,n∈N*
(1)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)存在正整數(shù)k,使(1+S1)(1+S1)…(1+Sn)≥k$\sqrt{2n+1}$對于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2-(m+1)x+m,g(x)=-(m+4)x-4+m,m∈R.
(1)比較f(x)與g(x)的大小;
(2)解不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則|2$\overrightarrow{a}$-3$\overrightarrow$|=$\sqrt{61}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=e2x+1-2mx-$\frac{3}{2}$m,其中m∈R,e為自然對數(shù)底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式f(x)≥n對任意x∈R都成立,求m•n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρsin2θ=4acosθ(a>0).
(1)求直線1的普通方程及曲線C的普通方程;
(2)若直線l與曲線C相交于M,N兩點(diǎn),且|MN|=8$\sqrt{5}$,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案