20.已知函數(shù)f(x)=sin(πx+$\frac{π}{4}$)和函數(shù)g(x)=cos(πx+$\frac{π}{4}$)在區(qū)間[-$\frac{9}{4}$,$\frac{3}{4}$]上的圖象交于A,B,C三點(diǎn),則△ABC的面積是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\frac{5\sqrt{2}}{4}$D.$\sqrt{2}$

分析 由題意結(jié)合正弦函數(shù)、余弦函數(shù)的圖象,求得A、B、C三點(diǎn)的坐標(biāo),即可求得△ABC的面積.

解答 解:∵函數(shù)f(x)=sin(πx+$\frac{π}{4}$)和函數(shù)g(x)=cos(πx+$\frac{π}{4}$)在區(qū)間[-$\frac{9}{4}$,$\frac{3}{4}$]上的圖象交于A,B,C三點(diǎn),
令sin(πx+$\frac{π}{4}$)=cos(πx+$\frac{π}{4}$),可得π•x+$\frac{π}{4}$=2kπ+$\frac{π}{4}$,或 π•x+$\frac{π}{4}$=2kπ+$\frac{5π}{4}$,k∈Z.
再結(jié)合x(chóng)∈[-$\frac{9}{4}$,$\frac{3}{4}$],解得x=-2,-1,0,
可得A(-2,$\frac{\sqrt{2}}{2}$)、B(0,-$\frac{\sqrt{2}}{2}$)、C(0,$\frac{\sqrt{2}}{2}$),∴△ABC的面積是$\frac{1}{2}$•2•$\sqrt{2}$=$\sqrt{2}$,
故選:D.

點(diǎn)評(píng) 本題主要考查了正弦函數(shù)、余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.王安石在《游褒禪山記》中寫(xiě)道“世之奇?zhèn)、瑰怪,非常之觀,常在于險(xiǎn)遠(yuǎn),而人之所罕至焉,故非有志者不能至也”,請(qǐng)問(wèn)“有志”是到達(dá)“奇?zhèn)、瑰怪,非常之觀”的( 。
A.充要條件B.既不充分也不必要條件
C.充分條件D.必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào).
(1)如果從第8行第7列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢查的3個(gè)人的編號(hào);
(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29 78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?br />成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?0+18+4=42
①若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求a,b的值:
 人數(shù) 數(shù)學(xué)
 優(yōu)秀 良好 及格
 地理 優(yōu)秀 7 20 5
 良好 9 18 6
 及格 a 4 b
②在地理成績(jī)及格的學(xué)生中,已知a≥11,b≥7,求數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.“向量$\overrightarrow{a}$,$\overrightarrow$共線(xiàn)”是“向量2$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{a}$-$\overrightarrow$共線(xiàn)”的充要 條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知在△ABC中,$cosC+(cosA-\sqrt{3}sinA)cosB=0$.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程:$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$,直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}x=a+2t\\ y=1-t\end{array}\right.$.
(1)若直線(xiàn)l與曲線(xiàn)C只有一個(gè)公共點(diǎn),求實(shí)數(shù)a;
(2)若點(diǎn)P,Q分別為直線(xiàn)l與曲線(xiàn)C上的動(dòng)點(diǎn),若${|{PQ}|_{min}}=\frac{{\sqrt{5}}}{5}$,求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.從a,b,c,d,e這5個(gè)元素中取出4個(gè)放在四個(gè)不同的格子中,且元素b不能放在第二個(gè)格子中,問(wèn)共有96種不同的放法.(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線(xiàn)C:y2=2px(p>0)上一點(diǎn)P(2,t)到焦點(diǎn)F的距離為3.
(1)求拋物線(xiàn)C的方程;
(2)過(guò)點(diǎn)F作兩條互相垂直的直線(xiàn)l1,l2,設(shè)l1與拋物線(xiàn)C交于A、B兩點(diǎn),l2與拋物線(xiàn)C交于D、E兩點(diǎn),求|AF|•|FB|+|EF|•|FD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}前n項(xiàng)和為Sn
(1)若Sn=2n-1,求數(shù)列{an}的通項(xiàng)公式;
(2)若a1=$\frac{1}{2}$,Sn=anan+1,an≠0,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)無(wú)窮數(shù)列{an}是各項(xiàng)都為正數(shù)的等差數(shù)列,是否存在無(wú)窮等比數(shù)列{bn},使得an+1=anbn恒成立?若存在,求出所有滿(mǎn)足條件的數(shù)列{bn}的通項(xiàng)公式;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案