7.楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第19個(gè)數(shù);
(2)設(shè)第n行中所有數(shù)和為A,n階(包括0階)楊輝三角中的所有數(shù)的和為B,且A+B=95,求n的值;
(3)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35,我們發(fā)現(xiàn)1+3+6+10+15=35:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m,k(m,k∈N*)子表示上述結(jié)論,并證明之.

分析 (1)根據(jù)數(shù)陣中數(shù)的排列規(guī)律,可得第n行的從左到右第m+1個(gè)數(shù)為Cnm,(n∈N,m∈N且m≤n),由此即可算出第20行中從左到右的第4個(gè)數(shù)的大。
(2)由條件知,A=2n,B=1+2+22+23+…+2n=2n+1-1,建立關(guān)于n的方程并化簡整理,解之可得n=5;
(3)根據(jù)題意,所求結(jié)論可表示為Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m).再由組合數(shù)的性質(zhì):Cmm+Cmm-1=Cm+1m,代入等式的左邊進(jìn)行化簡整理,即可得到該等式成立

解答 解:(1)由題意,得第n行的從左到右第m+1個(gè)數(shù)Cnm,(n∈N,m∈N且m≤n),
∴第20行中從左到右的第19個(gè)數(shù)C2018=C202=190;
(2)由條件知,A=2n,B=1+2+22+23+…+2n=2n+1-1,
由A+B=95,得2n=32,所以,n=5.
(3)用公式表示為:Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m)
證明:左式=Cm-1m-1+Cmm-1+…+Cm+k-2m-1
=Cmm+Cmm-1+…+Cm+k-2m-1=Cm+1m+Cm+1m-1+…+Cm+k-2m-1
=…=Cm+k-2m+Cm+k-2m-1=Cm+k-1m=右式
即等式Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m)成立.

點(diǎn)評 本題給出三角形數(shù)陣,求它的指定項(xiàng)和在m斜列中包含的等式.著重考查了組合數(shù)的性質(zhì)、運(yùn)用組合數(shù)解決實(shí)際應(yīng)用問題、方程與恒等式的處理與證明等知識,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù),則其中是“保等比數(shù)列函數(shù)”的f(x)的序號( 。
①f(x)=x2; ②f(x)=2x;  ③f(x)=$\sqrt{|x|}$; ④f(x)=ln|x|.
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若數(shù)列{an}是等差數(shù)列,首項(xiàng)a2=37,a5=28,則Sn取最大值時(shí),n=( 。
A.13B.14C.15D.14或15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\frac{π}{2}$<α<π,tanα-$\frac{1}{tanα}$=-$\frac{3}{2}$,求tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,若AB=2,AC2-2BC2=1,則此三角形面積的最大值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.邊長為a的正六邊形的一個(gè)頂點(diǎn)為極點(diǎn),極軸通過它的一邊,求正六邊形各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,Sn為其前n項(xiàng)和,且滿足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}$≤$\frac{{n+8•{{(-1)}^n}}}{2n}$對任意的n∈N+恒成立,則實(shí)數(shù)λ的最大值為$-\frac{21}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,已知a1+a4+a7=99,a2+a5+a8=93,若對任意n∈N*,都有Sn<Sk成立,則k的值為( 。
A.22B.21C.20D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an},其前n項(xiàng)和為${S_n}={n^2}+n$
(Ⅰ)求a1,a2,a3;
(Ⅱ)求{an}的通項(xiàng)公式an

查看答案和解析>>

同步練習(xí)冊答案