【題目】如圖,在三棱柱中,四邊形均為正方形,且M的中點,N的中點.

1)求證:平面ABC

2)求二面角的正弦值;

3)設(shè)P是棱上一點,若直線PM與平面所成角的正弦值為,求的值

【答案】1)證明過程見詳解;(2;(3.

【解析】

1)先取中點為,連接,,根據(jù)面面平行的判定定理,得到平面平面,進而可得平面ABC;

2)先由題意,得到,,兩兩垂直,以為坐標(biāo)原點,分別以,軸,軸,軸建立空間直角坐標(biāo)系,設(shè)邊長為,分別求出平面和平面的一個法向量,根據(jù)向量夾角公式,求解,即可得出結(jié)果;

3)先設(shè),得到,根據(jù)空間向量的夾角公式,列出等式求解,即可得出結(jié)果.

1)取中點為,連接,,

因為的中點,的中點,

所以,,

平面,平面,

所以平面平面,

平面,

所以平面ABC;

2)因為四邊形,均為正方形,所以,兩兩垂直,

為坐標(biāo)原點,分別以,,軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè)邊長為,則,,,

所以,

因此,,

設(shè)平面的一個法向量為,

,所以,令,則,

因此;

設(shè)平面的一個法向量為,

,所以,令,則,

因此,

設(shè)二面角的大小為

,

所以;

3)因為是棱上一點,設(shè),則

所以,

由(2)知,平面的一個法向量為

又直線與平面所成角的正弦值為,記直線與平面所成角為

則有,

整理得,解得(舍)

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,軸上方的點在拋物線上,且,直線與拋物線交于兩點(點不重合),設(shè)直線的斜率分別為,.

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng)時,求證:直線恒過定點并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,為橢圓的左、右頂點,橢圓的右焦點為,橢圓的離心率為.

1)設(shè)直線與橢圓交于兩點,且,求的值;

2)設(shè)過點且斜率為1的直線與橢圓交于,(其中分別在軸的上、下方)兩點,當(dāng)時,記、的面積分別為,求的最小值,并求此時橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟的不斷發(fā)展和人們消費觀念的不斷提升,越來越多的人日益喜愛旅游觀光.某人想在20195月到某景區(qū)旅游觀光,為了避開旅游高峰擁擠,方便出行,他收集了最近5個月該景區(qū)的觀光人數(shù)數(shù)據(jù)見下表:

月份

2018.12

2019.1

2019.2

2019.3

2019.4

月份編號

1

2

3

4

5

旅游觀光人數(shù)(百萬人)

0.5

0.6

1

1.4

1.7

1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型擬合旅游觀光人數(shù)少(百萬人)與月份編號之間的相關(guān)關(guān)系,請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測20195月景區(qū)的旅游觀光人數(shù).

2)當(dāng)?shù)芈糜尉譃榱祟A(yù)測景區(qū)給當(dāng)?shù)氐呢斦䦷淼氖杖霠顩r,從20194月的旅游觀光人群中隨機抽取了200人,并對他們旅游觀光過程中的開支情況進行了調(diào)查,得到如下頻率分布表:

開支金額(千元)

頻數(shù)

10

30

40

60

30

20

10

若采用分層抽樣的方法從開支金額低于4千元的游客中抽取8人,再在這8人中抽取3人,記這3人中開支金額低于3千元的人數(shù)為,求的分布列和數(shù)學(xué)期望.

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年春節(jié)期間,全國人民都在抗擊新型冠狀病毒肺炎的斗爭中.當(dāng)時武漢多家醫(yī)院的醫(yī)用防護物資庫存不足,某醫(yī)院甚至面臨斷貨危機,南昌某生產(chǎn)商現(xiàn)有一批庫存的醫(yī)用防護物資,得知消息后,立即決定無償捐贈這批醫(yī)用防護物資,需要用A、B兩輛汽車把物資從南昌緊急運至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時間互不影響.據(jù)調(diào)查統(tǒng)計2000輛汽車,通過這兩條路線從南昌到武漢所用時間的頻數(shù)分布表如下:

所用的時間(單位:小時)

路線1的頻數(shù)

200

400

200

200

路線2的頻數(shù)

100

400

400

100

假設(shè)汽車A只能在約定交貨時間的前5小時出發(fā),汽車B只能在約定交貨時間的前6小時出發(fā)(將頻率視為概率).為最大可能在約定時間送達這批物資,來確定這兩車的路線.

1)汽車A和汽車B應(yīng)如何選擇各自的路線.

2)若路線1、路線2一次性費用分別為3.2萬元、1.6萬元,且每車醫(yī)用物資生產(chǎn)成本為40萬元(其他費用忽略不計),以上費用均由生產(chǎn)商承擔(dān),作為援助金額的一部分.根據(jù)這兩輛車到達時間分別計分,具體規(guī)則如下(已知兩輛車到達時間相互獨立,互不影響):

到達時間與約定時間的差x(單位:小時)

該車得分

0

1

2

生產(chǎn)商準(zhǔn)備根據(jù)運輸車得分情況給出現(xiàn)金排款,兩車得分和為0,捐款40萬元,兩車得分和每增加1分,捐款增加20萬元,若汽車AB用(1)中所選的路線運輸物資,記該生產(chǎn)商在此次援助活動中援助總額為Y(萬元),求隨機變量Y的期望值,(援助總額一次性費用生產(chǎn)成本現(xiàn)金捐款總額)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點,以為圓心作半徑為的圓,圓軸的負(fù)半軸交于點,與拋物線分別交于點.

1)若為直角三角形,求半徑的值;

2)判斷直線與拋物線的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線焦點為,直線與拋物線交于兩點.到準(zhǔn)線的距離之和最小為8.

1)求拋物線方程;

2)若拋物線上一點縱坐標(biāo)為,直線分別交準(zhǔn)線于.求證:以為直徑的圓過焦點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)玩游戲,對于給定的實數(shù),按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把乘以2后再減去6;如果出現(xiàn)一個正面朝上,一個反面朝上,則把除以2后再加上6,這樣就可得到一個新的實數(shù),對實數(shù)仍按上述方法進行一次操作,又得到一個新的實數(shù),當(dāng)時,甲獲勝,否則乙獲勝,若甲勝的概率為,則的取值范圍是____

查看答案和解析>>

同步練習(xí)冊答案