分析 由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$作出可行域如圖,因為直線kx+y-3k=0過定點(3,0),所以只有目標函數z=y-x過A時取最大值是4,
由$\left\{\begin{array}{l}{x+y-2=0}\\{y-x=4}\end{array}\right.$,解得A(-1,3)此時,-k=$\frac{3-0}{-1-3}$=-$\frac{3}{4}$,所以k=$\frac{3}{4}$;
故答案為:$\frac{3}{4}$.
點評 本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.如果約束條件中含有參數,我們可以先畫出不含參數的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數的方程(組),代入另一條直線方程,消去x,y后,即可求出參數的值.
科目:高中數學 來源: 題型:選擇題
A. | a∈(-∞,$\frac{1}{6}$) | B. | a∈(-$\frac{1}{2}$,+∞) | C. | a∈(-$\frac{1}{2}$,$\frac{1}{6}$) | D. | a∈($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 函數f(x)的最小正周期為2π | |
B. | 函數f(x)在$[{\frac{3π}{4},π}]$上單調遞增 | |
C. | 函數f(x)的圖象關于直線$x=-\frac{7π}{12}$對稱 | |
D. | 函數f(x)的圖象關于點$({\frac{π}{12},0})$對稱- |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,$\frac{2}{3}$] | B. | [-$\frac{1}{3}$,$\frac{1}{2}$] | C. | [0,$\frac{1}{2}$] | D. | [0,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com