【題目】△ABC的三個內(nèi)角為A、B、C,若 ,則sin2B+2cosC的最大值為(
A.
B.1
C.
D.2

【答案】C
【解析】解:∵△ABC的三個內(nèi)角為A、B、C,若 ,則 =tan( + )= ,

求得 tanA=1,∴A= ,B+C=

sin2B+2cosC=sin2( ﹣C)+2cosC=﹣2cos2C+2cosC=1﹣2cos2C+2cosC.

令t=cosC,C∈(0, ),則t∈(﹣ ,1),要求的式子為﹣2t2+2t+1=﹣2 + ,

故當t= 時,則sin2B+2cosC取得最大值為 ,

故選:C.

【考點精析】認真審題,首先需要了解三角函數(shù)的最值(函數(shù),當時,取得最小值為;當時,取得最大值為,則,,).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,最小正周期為π且為奇函數(shù)的是(
A.y=sin
B.y=cos
C.y=cos2x
D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,Sn為其前n項和,且 ,則t=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:方程 =1表示焦點在x軸上的橢圓,q:雙曲線 =1的離心率e∈( ).
(1)若橢圓 =1的焦點和雙曲線 =1的頂點重合,求實數(shù)m的值;
(2)若“p∧q”是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且其圖象向左平移 個單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象(
A.關(guān)于直線x= 對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(sinx﹣cosx)(0≤x≤2016π),則函數(shù)f(x)的各極大值之和為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD是一個歷史文物展覽廳的俯視圖,點E在AB上,在梯形BCDE區(qū)域內(nèi)部展示文物,DE是玻璃幕墻,游客只能在△ADE區(qū)域內(nèi)參觀,在AE上點P處安裝一可旋轉(zhuǎn)的監(jiān)控攝像頭,∠MPN為監(jiān)控角,其中M、N在線段DE(含端點)上,且點M在點N的右下方,經(jīng)測量得知:AD=6米,AE=6米,AP=2米,∠MPN= ,記∠EPM=θ(弧度),監(jiān)控攝像頭的可視區(qū)域△PMN的面積為S平方米.
(1)求S關(guān)于θ的函數(shù)關(guān)系式,并寫出θ的取值范圍:(參考數(shù)據(jù):tan ≈3)
(2)求S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過點E(1,0)的直線與圓O:x2+y2=4相交于A、B兩點,過點C(2,0)且與AB垂直的直線與圓O的另一交點為D.
(1)當點B坐標為(0,﹣2)時,求直線CD的方程;
(2)求四邊形ABCD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實根”,其中a,b為實常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機數(shù),b為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

同步練習冊答案