已知定義域為(-∞,0)∪(0,+∞)的偶函數(shù)g(x)在(-∞,0)內(nèi)為單調(diào)遞減函數(shù),且g(x•y)=g(x)+g(y)對任意的x,y都成立,g(2)=1.
(1)證明g(x)在(0,+∞)內(nèi)為單調(diào)遞增函數(shù)
(2)求g(4)的值;
(3)求滿足條件g(x)>g(x+1)+2的x的取值范圍.
解:(1)設(shè)0<x
1<x
2,則0>-x
1>-x
2,
∵g(x)在(-∞,0)為單調(diào)遞減函數(shù),∴g(-x
1)>g(-x
2),
∵g(x)為偶函數(shù),∴-g(x
1)>-g(x
2),即g(x
1)<g(x
2),
∴g(x)在(0,+∞)為單調(diào)遞增函數(shù).
(2)令x=y=2代入g(x•y)=g(x)+g(y)得,
g(4)=g(2×2)=g(2)+g(2)=2,
(3)∵g(x)>2+g(x+1)=g(4)+g(x+1)=g[4(x+1)]
∵g(x)為偶函數(shù),∴g(|x|)>g[|4(x+1)|]
由(1)得,g(x)在(0,+∞)為單調(diào)遞增函數(shù),
∴
解得
或
,
綜上x的取值范圍為
.
分析:(1)設(shè)0<x
1<x
2,則0>-x
1>-x
2,利用偶函數(shù)的關(guān)系式和單調(diào)性進行轉(zhuǎn)化,得到g(x
1)<g(x
2),即得證;
(2)由g(x•y)=g(x)+g(y)對任意的x,y都成立及g(2)=1,取x=y=2可求g(4);
(3)結(jié)合(2)和已知把不等式化為g(x)>g[4(x+1)],g(x)為偶函數(shù),且在(-∞,0)為單調(diào)遞減函數(shù),可得g(x)在(0,+∞)為單調(diào)遞增函數(shù).從而可得|x|>4|x+1|,|x+1|≠0,解不等式可求x的取值范圍.
點評:本題考查了利用賦值法求解抽象函數(shù)的函數(shù)值,偶函數(shù)在對稱區(qū)間上的單調(diào)性的證明,解決本題的關(guān)鍵是由偶函數(shù)y=g(x)在(0,+∞)單調(diào)遞增,g(a)>g(b)可得|a|>|b|,考生容易漏函數(shù)的定義域,從而誤寫為a>b.