(本題滿分12分)二次函數f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在區(qū)間[2a,a+1]上不單調,求a的取值范圍.
科目:高中數學 來源: 題型:解答題
(13分)定義在R上的增函數y=f(x)對任意x,yR都有f(x+y)=f(x)+f(y),則
(1)求f(0) (2) 證明:f(x)為奇函數
(3)若對任意恒成立,求實數k的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某化工廠生產的某種化工產品,當年產量在150噸至250噸之間時,其生產的總成本(萬元)與年產量(噸)之間的函數關系式近似地表示為.問:(1)每噸平均出廠價為16萬元,年產量為多少噸時,可獲得最大利潤?并求出最大利潤;
(2)年產量為多少噸時,每噸的平均成本最低?并求出最低成本。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分) 2010年11月在廣州召開亞運會,某小商品公司開發(fā)一種亞運會紀念品,每件產品的成本是15元,銷售價是20元,月平均銷售a件,通過改進工藝,產品的成本不變,質量和技術含金量提高,市場分析的結果表明:如果產品的銷售價提高的百分率為x(0<x<1),那么月平均銷售量減少的百分率為x2,記改進工藝后,該公司銷售紀念品的月平均利潤是y(元).
(1)寫出y與x的函數關系式;
(2)改進工藝后,確定該紀念品的售價,使該公司銷售該紀念品的月平均利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知函數和點,過點作曲線的兩條切線、,切點分別為、.
(1)求證:為關于的方程的兩根;
(2)設,求函數的表達式;
(3)在(2)的條件下,若在區(qū)間內總存在個實數(可以相同),使得不等式成立,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(理科)已知函數=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點,求實數a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數m的取值范圍;
(Ⅲ)若函數y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com