(13分)定義在R上的增函數(shù)y=f(x)對任意x,yR都有f(x+y)=f(x)+f(y),則
(1)求f(0)       (2) 證明:f(x)為奇函數(shù)
(3)若對任意恒成立,求實數(shù)k的取值范圍

解:(1)f (0)=0…………………3分
(2) 令y= ,得f(x-x)=f(x)+f(-x),又f(0)=0,則有0=f(x)+f(-x),即可證得………7分
(3)因為f(x)在R上時增函數(shù),又由(2)知f(x)是奇函數(shù),即有,又有,所以只要使………13分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在定義域上為增函數(shù),且滿足, .
(Ⅰ) 求的值;         
(Ⅱ) 解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知是定義在上的奇函數(shù),且時,
(1)求,
(2)求函數(shù)的表達式;
(3)若,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)計算:;
(2)已知,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的定義域為,并滿足以下條件:①對任意的;
②對任意的,都有;③.
1、求的值;
2、求證:上的單調(diào)遞增函數(shù);
3、解關(guān)于的不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是一個二次函數(shù)的圖象.
(1)寫出這個二次函數(shù)的零點;
(2)寫出這個二次函數(shù)的解析式及時函數(shù)的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2010·無錫模擬)已知f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1,試解不等式f(x)+f(x-8)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商家經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個月能售出500kg;銷售單價每漲1元,月銷售量就減少10kg,針對這種銷售情況,
(1)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x的函數(shù)關(guān)系式;
商店想在月銷售成本不超過10000元的情況下,使得月銷售利潤不少于8000元,銷售單價應(yīng)定為多少元時,利潤最大?

查看答案和解析>>

同步練習(xí)冊答案