設(shè)x,y,z為正實(shí)數(shù),滿足x-y+2z=0,則的最小值是   
【答案】分析:先將等式化為y=x+2z,再利用基本不等式求最值.
解答:解:由題意得,y=x+2z,
∵x,y,z為正實(shí)數(shù),
∴y=x+2z≥,∴y2≥8xz,∴的最小值是8,
故答案為8.
點(diǎn)評:本題的考點(diǎn)是基本不等式在最值問題中的應(yīng)用,主要考查基本不等式的運(yùn)用,應(yīng)注意基本不等式的使用條件:一正二定三相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y,z為正實(shí)數(shù),滿足x-2y+3z=0,則
y2xz
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)二模)設(shè)x,y,z為正實(shí)數(shù),滿足x-y+2z=0,則
y2xz
的最小值是
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y,z為正實(shí)數(shù),x-2y+3z=0,則的最小值是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 設(shè)x,y,z為正實(shí)數(shù),求函數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)xy,z為正實(shí)數(shù),x-2y+3z=0,則的最小值是______學(xué)科網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案