設(shè)數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,n∈N,則f2011(x)=________.

-cosx
分析:由(sinx)(4)=sinx,可得,∴fn+4(x)=fn(x),據(jù)此可求出答案.
解答:∵(sinx)=cosx,(cosx)=-sinx,(-sinx)=-cosx,(-cosx)=sinx,
∴fn+4(x)=fn(x),
∴f2011(x)=f3(x)=-cosx.
故答案是-cosx.
點評:本題考查了三角函數(shù)的導(dǎo)數(shù),理解三角函數(shù)的導(dǎo)函數(shù)具有周期性是解決此問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-x+
1
2
的定義域是[n,n+1],n∈N*,則f(x)的值域中所含整數(shù)的個數(shù)是(  )
A、1個B、2個C、3個D、2n個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
(n∈N*)
,則f(n+1)-f(n)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=f1(x)=
x1+x
,fn(x)=fn-1[f(x)](n≥2,n∈N+)
,則f(1)+f(2)+…+f(n)+f1(1)+f2(1)+…+fn(1)=
n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
x+1
,點A0表示原點,點An(n,f(n))(n∈N*),θn是向量
a
與向量
i
=(1,0)
的夾角,
an
=
A0A1
+
A1A2
+
A2A3
+…+
An-1An
,設(shè)Sn=tanθ1+tanθ2+tanθ3+…+tanθn,則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷化二模)如圖,一個樹形圖依據(jù)下列規(guī)律不斷生長:1個空心圓點到下一行僅生長出1個實心圓點,1個實心圓點到下一行生長出1個實心圓點和1個空心圓點.則第8行的實心圓點的個數(shù)是
13
13
.設(shè)第n行的實心圓點的個數(shù)是 f(n),則f(n)的遞推關(guān)系式為
f(n)=f(n-1)+f(n-2)
f(n)=f(n-1)+f(n-2)

查看答案和解析>>

同步練習(xí)冊答案