已知圓C:。
(1)直線過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若,求直線的方程;
(2)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程。
解:(1)①當(dāng)直線垂直于x軸時(shí),則此時(shí)直線的方程為x=1,
與圓的兩個(gè)交點(diǎn)坐標(biāo)為,其距離為,滿足題意;
②若直線不垂直于x軸,設(shè)其方程為,即,
設(shè)圓心到此直線的距離為d,
,解得:d=1,
,
故所求直線方程為
綜上所述,所求直線為或x=1。
(2)設(shè)點(diǎn)M的坐標(biāo)為,Q點(diǎn)坐標(biāo)為,則N點(diǎn)坐標(biāo)是,

,
,
又∵,
,
由已知,直線m∥Ox軸,所以
∴Q點(diǎn)的軌跡方程是。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知L為過(guò)點(diǎn)P(-
3
3
2
,-
3
2
)
且傾斜角為30°的直線,圓C為圓心是坐標(biāo)原點(diǎn)且半徑等于1的圓,Q表示頂點(diǎn)在原點(diǎn)而焦點(diǎn)是(
2
8
,0)
的拋物線,設(shè)A為L(zhǎng)和C在第三象限的交點(diǎn),B為C和Q在第四象限的交點(diǎn).
(1)寫出直線L、圓C和拋物線Q的方程,并作草圖.
(2)寫出線段PA、圓弧AB和拋物線上OB一段的函數(shù)表達(dá)式.
(3)設(shè)P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線

于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱,若存在,

求出的斜率范圍,若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆甘肅蘭州一中高一下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題8分)已知圓C: 及直

(1)證明:不論m取何值,直線l與圓C恒相交;

(2)求直線l被圓C截得的弦長(zhǎng)最短時(shí)的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)

        已知橢圓C的中心在的點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線與橢圓交于A,B兩點(diǎn),的面積為4,的周長(zhǎng)為

   (I)求橢圓C的方程;

   (II)設(shè)點(diǎn)Q的從標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直

線PF1,PF2都相切,若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省綿陽(yáng)中學(xué)09-10學(xué)年高二上學(xué)期第一次月考 題型:選擇題

 已知圓C:,直線 ,圓上只有兩個(gè)點(diǎn)到直

的距離為1,則k的取值范圍(     )

        A.     B.    C.  D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案