15.已知四邊形ABCD滿足|AB|=|AD|,|CD|=$\sqrt{3}$且∠BAD=60°,$\overrightarrow{AC}$-$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AD}$,那么四邊形ABCD的面積為$\frac{3\sqrt{3}}{2}$.

分析 由題意作圖輔助,從而可判斷四邊形為直角梯形,從而求其面積.

解答 解:由題意作圖如右圖,
∵$\overrightarrow{AC}$-$\overrightarrow{AB}$=$\overrightarrow{BC}$=$\frac{1}{2}$$\overrightarrow{AD}$,
∴BC∥AD且|BC|=$\frac{1}{2}$|AD|,
又∵|AB|=|AD|,且∠BAD=60°,
∴|AE|=$\frac{1}{2}$|AB|=$\frac{1}{2}$|AD|,
∴|BC|=|DE|,
∴BCDE是平行四邊形,
∴CD∥BE,
∴DC⊥AD,
∵|CD|=$\sqrt{3}$,
∴|AB|=|AD|=2,
∴S=$\frac{1+2}{2}$$\sqrt{3}$=$\frac{3\sqrt{3}}{2}$,
故答案為:$\frac{3\sqrt{3}}{2}$.

點評 本題考查了學(xué)生的作圖能力及數(shù)形結(jié)合的思想應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示的陰影部分可用二元一次不等式組表示為$\left\{\begin{array}{l}{x-y≥0}\\{x+y>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y≤0}\\{x+y>0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)i為虛數(shù)單位,已知${z_1}=\frac{1-i}{1+i},{z_2}=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,則|z1|,|z2|的大小關(guān)系是( 。
A.|z1|<|z2|B.|z1|=|z2|C.|z1|>|z2|D.無法比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x,y滿足不等式組$\left\{\begin{array}{l}y-2≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,則$\frac{y}{x}$的最大值是( 。
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在數(shù)列{an}中,a1=1,點(an,an+1)在函數(shù)y=3x+2圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左.右焦點,且|F1F2|=2,若P是該雙曲線右支上的一點,且滿足|PF1|=2|PF2|,則△PF1F2面積的最大值是( 。
A.2B.$\frac{5}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,平面四邊形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,求
(Ⅰ)∠ADB;
(Ⅱ)△ADC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.根據(jù)如樣本數(shù)據(jù):
x24568
y2040607080
得到的回歸直線方程為$\widehat{y}$=10.5x+a,據(jù)此模型來預(yù)測當(dāng)x=20時,y的值為( 。
A.210B.210.5C.211.5D.212.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=excosx在點(0,f(0))處的切線方程為x-y+1=0.

查看答案和解析>>

同步練習(xí)冊答案