【題目】已知橢圓的一個焦點為,離心率為.點為圓上任意一點, 為坐標原點.
(1)求橢圓的標準方程;
(2)設(shè)直線經(jīng)過點且與橢圓相切, 與圓相交于另一點,點關(guān)于原點的對稱點為,證明:直線與橢圓相切.
【答案】(1)(2)見解析
【解析】試題分析:(1)根據(jù)橢圓的幾何性質(zhì)得到, ,進而求得方程;(2)由點P的坐標寫出直線PA,由相切關(guān)系得到,同理,由直線與橢圓也得到: ,再由,可化簡得到.
解析:
(Ⅰ)解:由題意,知, ,
所以, ,
所以橢圓的標準方程為.
(Ⅱ)證明:由題意,點在圓上,且線段為圓的直徑,
所以.
當直線軸時,易得直線的方程為,
由題意,得直線的方程為,
同理當直線軸時,直線也與橢圓相切.
當直線與軸既不平行也不垂直時,
設(shè)點,直線的斜率為,則,直線的斜率,
所以直線: ,直線: ,
由 消去,
得.
因為直線與橢圓相切,
所以,
整理,得(1)
同理,由直線與橢圓的方程聯(lián)立,
得.(2)
因為點為圓上任意一點,
所以,即.
代入(1)式,得,
代入(2)式,得
.
所以此時直線與橢圓相切.
綜上,直線與橢圓相切.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,已知(a﹣3b)cosC=c(3cosB﹣cosA).
(1)求 的值;
(2)若c= a,求角C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超過x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:
1證明直線l經(jīng)過定點并求此點的坐標;
2若直線l不經(jīng)過第四象限,求k的取值范圍;
3若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設(shè)的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , 為的中點.
(1)求四棱錐的體積;
(2)求證: ;
(3)判斷線段上是否存在一點 (與點不重合),使得四點共面? (結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點, .
(Ⅰ)λ為何值時,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2-4x-14y+45=0及點Q(-2,3).
(1)若點P(m,m+1)在圓C上,求直線PQ的斜率.
(2)若M是圓C上任一點,求|MQ|的取值范圍.
(3)若點N(a,b)在圓C上,求的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com