【題目】已知函數(shù)f(x)=(x﹣k)ex . (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值.
【答案】解:(Ⅰ)f′(x)=(x﹣k+1)ex,
令f′(x)=0,得x=k﹣1,
f′(x)f(x)隨x的變化情況如下:
x | (﹣∞,k﹣1) | k﹣1 | (k﹣1,+∞) |
f′(x) | ﹣ | 0 | + |
f(x) | ↓ | ﹣ek﹣1 | ↑ |
∴f(x)的單調(diào)遞減區(qū)間是(﹣∞,k﹣1),f(x)的單調(diào)遞增區(qū)間(k﹣1,+∞);
(Ⅱ)當(dāng)k﹣1≤0,即k≤1時,函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞增,
∴f(x)在區(qū)間[0,1]上的最小值為f(0)=﹣k;
當(dāng)0<k﹣1<1,即1<k<2時,由(I)知,f(x)在區(qū)間[0,k﹣1]上單調(diào)遞減,f(x)在區(qū)間(k﹣1,1]上單調(diào)遞增,
∴f(x)在區(qū)間[0,1]上的最小值為f(k﹣1)=﹣ek﹣1;
當(dāng)k﹣1≥1,即k≥2時,函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞減,
∴f(x)在區(qū)間[0,1]上的最小值為f(1)=(1﹣k)e;
綜上所述f(x)min=
【解析】(I)求導(dǎo),令導(dǎo)數(shù)等于零,解方程,跟據(jù)f′(x)f(x)隨x的變化情況即可求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)根據(jù)(I),對k﹣1是否在區(qū)間[0,1]內(nèi)進(jìn)行討論,從而求得f(x)在區(qū)間[0,1]上的最小值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),則a,b,c的大小關(guān)系正確的是( )
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個說法: ①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,22),則p(ξ>4)=
④對分類變量X與Y,若它們的隨機(jī)變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.
其中正確的說法是( )
A.①④
B.②③
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(1)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x﹣2=0垂直,求f(x)的單調(diào)區(qū)間(其中e為自然對數(shù)的底數(shù));
(2)若對任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,且點(diǎn)是該函數(shù)圖象的一個最高點(diǎn).
(1)求函數(shù)的解析式;
(2)若,求函數(shù)的值域;
(3)把函數(shù)的圖象向右平移個單位長度,得到函數(shù)在上是單調(diào)增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠2萬元設(shè)計了某款式的服裝,根據(jù)經(jīng)驗,每生產(chǎn)1百套該款式服裝的成本為1萬元,每生產(chǎn)(百套)的銷售額(單位:萬元).
(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤;
(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?
(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤最大,并求最大利潤.(注:利潤=銷售額-成本,其中成本=設(shè)計費(fèi)+生產(chǎn)成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法: ①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;
②設(shè)有一個回歸方程 ,變量x增加一個單位時,y平均增加3個單位;
③線性回歸方程 必經(jīng)過點(diǎn) ;
④在吸煙與患肺病這兩個分類變量的計算中,從獨(dú)立性檢驗知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e誤的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a<0). (Ⅰ)當(dāng)a=﹣3時,求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個零點(diǎn),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民的休閑方式是否與性別有關(guān),得到下面的數(shù)據(jù)表:
休閑方式 | 看電視 | 運(yùn)動 | 合計 |
男性 | 20 | 10 | 30 |
女性 | 45 | 5 | 50 |
合計 | 65 | 15 | 80 |
(1)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人是以運(yùn)動為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為休閑方式與性別有關(guān)系?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ),其中n=a+b+c+d)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com