一個多面體的直觀圖及三視圖分別如圖1和圖2所示(其中正視圖和側視圖均為矩形,俯視圖是直角三角形),M、N分別是AB1、A1C1的中點,MN⊥AB1


(Ⅰ)求實數(shù)a的值并證明MN∥平面BCC1B1;
(Ⅱ)在上面結論下,求平面AB1C1與平面ABC所成銳二面角的余弦值.

解:(Ⅰ)由圖可知,ABC-A1B1C1為直三棱柱,側棱CC1=a,底面為直角三角形,AC⊥BC,AC=3,BC=4
以C為坐標原點,分別以CA,CB,CC1為x,y,z軸建立空間直角坐標系,
,
所以,
因為MN⊥AB1,所以
解得:a=4…(3分)
此時,,平面BCC1B1的法向量

與平面BCC1B1的法向量垂直,且MN?平面BCC1B1
∴MN∥平面BCC1B1…(6分)
(Ⅱ) 平面ABC的法向量,設平面AB1C1的法向量為,平面AB1C1與平面ABC所成銳二面角的大小等于其法向量所成銳角θ的大小,法向量滿足:
因為A(3,0,0),C1(0,0,4),B1(0,4,4),
所以,
所以,,
所以,
所以平面AB1C1與平面ABC所成銳二面角的余弦值為…(13分)
分析:(Ⅰ)根據(jù)題意,以C為坐標原點,分別以CA,CB,CC1為x,y,z軸建立空間直角坐標系,用坐標表示點與向量,證明與平面BCC1B1的法向量垂直,即可證得MN∥平面BCC1B1;
(Ⅱ) 平面ABC的法向量,求出平面AB1C1的法向量,從而可得,即可得到平面AB1C1與平面ABC所成銳二面角的余弦值.
點評:本題考查線面平行,考查面面角,解題的關鍵是建立空間直角坐標系,利用向量知識解決立體幾何問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

18、一個多面體的直觀圖及三視圖如圖所示,M、N分別是AB1、A1C1的中點.
(1)求證:MN⊥AB1,MN∥平面BCC1B1;
(2)求二面角A-BC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)一個多面體的直觀圖及三視圖如圖所示:(其中M,N分別是AF,BC的中點).
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖及三視圖如圖所示(其中M、N分別是AF、BC的中點),則多面體F-MNB的體積=
8
3
8
3
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖及三視圖分別如圖1和圖2所示(其中正視圖和側視圖均為矩形,俯視圖是直角三角形),M、N分別是AB1、A1C1的中點,MN⊥AB1


(Ⅰ)求實數(shù)a的值并證明MN∥平面BCC1B1;
(Ⅱ)在上面結論下,求平面AB1C1與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖及三視圖如圖所示,則多面體A-CDEF的體積為
8
3
8
3

查看答案和解析>>

同步練習冊答案