過雙曲線M:x2-
y2
b2
=1的左頂點A作斜率為1的直線l,若l與雙曲線的兩漸近線分別交于B,C兩點,且
AB
=
BC
,則雙曲線的離心率是
10
10
分析:根據(jù)雙曲線方程,得漸近線方程為y=-bx或y=bx.設直線l的方程為y=x+1,與漸近線方程聯(lián)解分別得到B、C的橫坐標關于b的式子.由
AB
=
BC
得B為AC的中點,利用中點坐標公式建立關于b的方程并解之可得b=3,由此算出c=
10
,即可得到該雙曲線的離心率.
解答:解:由題可知A(-1,0)所以直線l的方程為y=x+1
∵雙曲線M的方程為x2-
y2
b2
=1,∴兩條漸近線方程為y=-bx或y=bx
由y=x+1和y=-bx聯(lián)解,得B的橫坐標為xB=-
1
b+1

同理可得C的橫坐標為xC=
1
b-1

AB
=
BC
,∴B為AC中點,可得2xB=xA+xC,
即-
1
b+1
•2=-1+
1
b-1
,解之得b=3(舍去b=0)
因此,c=
a2+b2
=
10
,可得雙曲線的離心率e=
c
a
=
10

故答案為:
10
點評:本題給出雙曲線的漸近線與過左頂點A的直線相交于B、C兩點且B為AC的中點,求雙曲線的離心率.著重考查了雙曲線的標準方程和簡單幾何性質(zhì)等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知一條曲線C在y軸右邊,C上任意一點到點F1(2,0)的距離減去它到y(tǒng)軸距離的差都是2.
(1)求曲線C的方程;
(2)若雙曲線M:x2-
y2
t
=1(t>0)的一個焦點為F1,另一個焦點為2,過F2的直線l與M相交于A、B兩點,直線l的法向量為
n
=(k,-1)(k>0),且
OA
OB
=0,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)已知雙曲線C1x2-
y2
4
=1

(1)求與雙曲線C1有相同焦點,且過點P(4,
3
)的雙曲線C2的標準方程;
(2)直線l:y=x+m分別交雙曲線C1的兩條漸近線于A、B兩點.當
OA
OB
=3
時,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C1:x2-y2=m(m>0)與橢圓C2
x2
a2
+
y2
b2
=1
有公共焦點F1F2,點N(
2
,1)
是它們的一個公共點.
(1)求C1,C2的方程;
(2)過點F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點A,B和C,D,求|AB|+|CD|的最大值,并求此時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點F作圓x2+y2=a2的切線FM,交y軸于點P,切圓于點M,若2
OM
=
OF
+
OP
,則雙曲線的離心率是( 。
A、
5
B、
3
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-
y2
3
=1
的左、右焦點為F1、F2,過點F2的直線L與其右支相交于M、N兩點(點M在x軸的上方),則點M到直線y=
3
x的距離d的取值范圍是
 

查看答案和解析>>

同步練習冊答案