已知n≥2,n∈N,求證:當(dāng)x≠kπ(k∈Z)時(shí),tanxtan2x+tan2xtan3x+…+tan(n-1)x·tannx=-n.

答案:三角恒等變換
提示:

當(dāng)出現(xiàn)兩正切的積和時(shí)可靈活運(yùn)用兩角和與差的正切公式變形.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=ln(x+1)+mx,當(dāng)x=0時(shí),函數(shù)f(x)取得極大值.
(1)求實(shí)數(shù)m的值;
(2)已知結(jié)論:若函數(shù)f(x)=ln(x+1)+mx在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,且a>-1,則存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.試用這個結(jié)論證明:若-1<x1<x2,函數(shù)g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1)
,則對任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正數(shù)λ1,λ2,…,λn,滿足λ12+…+λn=1,求證:當(dāng)n≥2,n∈N時(shí),對任意大于-1,且互不相等的實(shí)數(shù)x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)一模)已知a<b,且a2-a-6=0,b2-b-6=0,數(shù)列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數(shù)列{bn}是等比數(shù)列;
(2)已知數(shù)列{cn}滿足cn=
an3n
(n∈N*),試建立數(shù)列{cn}的遞推公式(要求不含an或bn);
(3)若數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年廣東省陽江市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=log3(ax+b)圖象過點(diǎn)A(2,1)和B(5,2),設(shè)an=3f(n),n∈N*
(Ⅰ)求函數(shù)f(x)的解析式及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使不等式對一切n∈N*均成立的最大實(shí)數(shù)a;
(Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,試問是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知a<b,且a2-a-6=0,b2-b-6=0,數(shù)列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數(shù)列{bn}是等比數(shù)列;
(2)已知數(shù)列{cn}滿足cn=(n∈N*),試建立數(shù)列{cn}的遞推公式(要求不含an或bn);
(3)若數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m<n,n,m∈N),共有Cn+1m種取法.在這Cn+1m種取法中,可以分成兩類:一類是取出的m個球全部為白球,另一類是取出一個黑球和(m-1)個白球,共有C1Cnm+C11Cnm-1種取法,即有等式Cnm+Cnm-1=Cn+1m成立.試根據(jù)上述思想,化簡下列式子:Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=    .(1≤k<m≤n,k,m,n∈N)

查看答案和解析>>

同步練習(xí)冊答案