設(shè)f(x)=ln(1+a-2x)(a>0),則f′(0)=_________.

解析:f′(x)=(a-2xlna)(-2),

f′(0)=(a0lna)(-2)=-lna.

答案:-lna

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
ln(1+x)
x
(x>0)

(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實數(shù)a,使得關(guān)于x的不等式ln(1+x)<ax在(0,+∞)上恒成立,若存在,求出a的取值范圍,若不存在,試說明理由;
(Ⅲ)求證:(1+
1
n
)n<e,n∈N*
(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=ln(1+a-2x),則f′(0)=____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)f(x)=
ln(1+x)
x
(x>0)

(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實數(shù)a,使得關(guān)于x的不等式ln(1+x)<ax在(0,+∞)上恒成立,若存在,求出a的取值范圍,若不存在,試說明理由;
(Ⅲ)求證:(1+
1
n
)n<e,n∈N*
(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=ln(1+a-2x),則f′(0)=___________.

查看答案和解析>>

同步練習冊答案