當(dāng)0<x<
π
2
時(shí),函數(shù)f(x)=
cos2x+4sin2x
sinxcosx
的最小值為
 
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用弦切互化,將函數(shù)轉(zhuǎn)化為正切關(guān)系,結(jié)合基本不等式的應(yīng)用即可得到結(jié)論.
解答: 解:f(x)=
cos2x+4sin2x
sinxcosx
=
1+tan2x
tanx
=
1
tanx
+tanx,
∵0<x<
π
2
,∴tanx>0,
1
tanx
+tanx≥2
tanx•
1
tanx
=2
,
當(dāng)且僅當(dāng)
1
tanx
=tanx,
即tanx=1,即x=
π
4
時(shí)取等號,
則函數(shù)f(x)的最小值為2,
故答案為:2
點(diǎn)評:本題主要考查三角函數(shù)的圖象和性質(zhì),利用弦切互化,結(jié)合基本不等式的應(yīng)用是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1
上點(diǎn)P與兩焦點(diǎn)F1,F(xiàn)2連線的夾角為60°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=2cosα
y=3sinα
(α為參數(shù)),在極坐標(biāo)系中(極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸),直線l的極坐標(biāo)方程為p(3cosθ-2sinθ)=6
(I)求直線l的直角坐標(biāo)方程;
(Ⅱ)求曲線C上動(dòng)點(diǎn)P到直線l距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
C
9
m
-
C
9
m+1
+
C
8
m
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(1,0,2),
AC
=(2,1,1),則平面ABC的一個(gè)法向量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l的方向向量為
a
=(1,-1,2),平面α的法向量為
u
=(-2,2,-4),則(  )
A、l∥αB、l⊥α
C、l?αD、l與α斜交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α、β、γ均為銳角,cosα2+cosβ2+cosγ2+2cosαcosβcosγ=1,求證:α+β+γ=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=5,b=4,∠C=60°,則C邊長為( 。
A、
21
B、
61
C、
41
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
6
3
,且經(jīng)過點(diǎn)(
3
2
,
1
2
).則該橢圓C的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊答案