分析 根據(jù)直線和圓相交的條件求出a,b的關(guān)系,利用線性規(guī)劃求出對應(yīng)區(qū)域的面積,結(jié)合幾何概型的概率公式進(jìn)行計(jì)算即可.
解答 解:根據(jù)題意,得$\left\{\begin{array}{l}{-2≤a≤2}\\{-2≤b≤2}\end{array}\right.$,
又直線x+y=1與圓(x-a)2+(y-b)2=2相交,
d≤r,
即$\frac{|a+b-1|}{\sqrt{2}}$≤$\sqrt{2}$,
得|a+b-1|≤2,
所以-1≤a+b≤3;
畫出圖形,如圖所示;
則事件“直線x+y=1與圓(x-a)2+(y-b)2=2相交”發(fā)生的概率為
P=$\frac{{S}_{陰影}}{{S}_{正方形}}$=$\frac{{4}^{2}-\frac{1}{2}{×3}^{2}-\frac{1}{2}{×1}^{2}}{{4}^{2}}$=$\frac{11}{16}$.
故答案為:$\frac{11}{16}$
點(diǎn)評 本題主要考查幾何概型的計(jì)算,根據(jù)直線和圓相交的位置關(guān)系求出a,b的關(guān)系是解決本題的關(guān)鍵.注意利用數(shù)形結(jié)合以及線性規(guī)劃的知識.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
喜愛春晚 | 不喜愛春晚 | 合計(jì) | |
男性員工 | |||
女性員工 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com