已知M(-2,-3),N(3,0),直線l過點(-1,2)且與線段MN相交,則直線l的斜率k的取值范圍是( 。
A.k≤-
1
2
或k≥5
B.-
1
2
≤k≤5
C.
1
2
≤k≤5
D.-5≤k≤
1
2
(如圖象)即P(-1,2),
由斜率公式可得PM的斜率k1=
2-(-3)
-1-(-2)
=5,
直線PN的斜率k2=
2-0
-1-3
=-
1
2
,
當直線l與x軸垂直(紅色線)時記為l′,
可知當直線介于l′和PM之間時,k≥5,
當直線介于l′和PN之間時,k≤-
1
2
,
故直線l的斜率k的取值范圍是:k≤-
1
2
,或k≥5
故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

建立適當?shù)淖鴺讼,用坐標法解決下列問題:
已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求圓上的點到直線的距離的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分) 已知橢圓的中心在坐標原點,焦點在坐標軸上,且經(jīng)過、 三點. (1)求橢圓的方程:(2)若點D為橢圓上不同于、的任意一點,,當內切圓的面積最大時。求內切圓圓心的坐標;(3)若直線與橢圓交于、兩點,證明直線與直線的交點在定直線上并求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲線C.
(1)求曲線C的方程;
(2)過點D(0,2)的直線與曲線C相交于不同的兩點M、N,且MD、N之間,設,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線的傾斜角為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線的傾斜角為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

[2014·南寧模擬]直線x+(a2+1)y+1=0的傾斜角的取值范圍是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線xcosθ+y+2=0的傾斜角的范圍是________.

查看答案和解析>>

同步練習冊答案