一個袋中有20個大小相同的小球,其中記上0號的有10個,記上n號的有n個(n=1,2,3,4).現(xiàn)從袋中任取一球,用ξ表示所取球的標(biāo)號.
(1)求ξ的分布列的數(shù)學(xué)期望和方差;
(2)若η=aξ+b,E(η)=2,D(η)=44,試求a、b的值.
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:(1)由題設(shè)知ξ=0,1,2,3,4,分別求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4),由此能求出ξ的分布列、數(shù)學(xué)期望和方差.
(2)由η=a2Dξ,Eη=aEξ+b,結(jié)合題設(shè)條件,能求出a、b的值.
解答: 解:(1)由題設(shè)知ξ=0,1,2,3,4,
P(ξ=0)=
10
20
=
1
2
,
P(ξ=1)=
1
20
,
P(ξ=2)=
2
20
=
1
10

P(ξ=3)=
3
20
,
P(ξ=4)=
4
20
=
1
5
,
∴ξ的分布列為:
ξ 0 1 2 3 4
P
1
2
1
20
1
10
3
20
1
5
…(3分)
∴Eξ=
1
2
+1×
1
20
+2×
1
10
+3×
3
20
+4×
1
5
=1.5.…(4分)
Dξ=(0-1.5)2×
1
2
+(1-1.5)2×
1
20
+(2-1.5)2×
1
10
+(3-1.5)2×
3
20
+(4-1.5)2×
1
5
=2.75.…(6分)
(2)由η=a2Dξ,得a2×2.75=44,即a=±4,…(8分)
又Eη=aEξ+b,
∴當(dāng)a=4時,由2=4×1.5+b,得b=-4;
當(dāng)a=-4時,由2=-4×1.5+b,得b=8.
a=4
b=-4
a=-4
b=8
即為所求.…(12分)
點評:本題考查離散型隨機變量的分布列、數(shù)學(xué)期望和方差,是中檔題,是歷年高考的必考題型之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+y2=1(a>4)的離心率的取值范圍是(  )
A、(0,
15
16
B、(0,
15
4
C、(
15
16
,1)
D、(
15
4
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-10≤0}
(1)若集合B=[-2m+1,-m-1],且A∪B=A,求實數(shù)m的取值范圍;
(2)若集合B={x|-2m+1≤x≤-m-1},且A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式(lgx)2-lgx-2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2≤x≤a,a≥-2},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},求使B∪C=B時a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某學(xué)校高三年級共800名男生中隨機抽取50名作為樣本測量身高.據(jù)測量,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160)第二組[160,165);…第八組[190,195].下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(Ⅰ)估計這所學(xué)校高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(Ⅱ)在上述樣本中從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x,y,求滿足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述樣本中從最后三組中任取3名學(xué)生參加學(xué);@球隊,用ξ表示從第八組中取到的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
 
5
7
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不論m取任何實數(shù),直線l:(m-1)x-y+2m+1=0恒過一定點,則該定點的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-ax+2=0與直線l相切于點A(3,1),則直線l的方程為
 

查看答案和解析>>

同步練習(xí)冊答案