曲線y=ex在點(diǎn)A(0,1)處的切線斜率為( 。
A.1B.2C.eD.
A
由y=ex,得到y(tǒng)′=ex,
把x=0代入得:y′x=0=1,
則曲線y=ex在點(diǎn)A(0,1)處的切線斜率為1.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線)與橢圓交于兩點(diǎn),線段 的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點(diǎn),,在第三象限,線段的中點(diǎn)在直線上.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),,)且直線PB,PC分別交直線OA,兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A,B分別是直線yxy=-x上的動(dòng)點(diǎn),且|AB|=,設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)過點(diǎn)(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點(diǎn)P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點(diǎn)分別為MN,求證:直線MN恒過一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平面上以機(jī)器人在行進(jìn)中始終保持與點(diǎn)的距離和到直線的距離相等.若機(jī)器人接觸不到過點(diǎn)且斜率為的直線,則的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2014·武漢模擬)圓(x-a)2+y2=1與雙曲線x2-y2=1的漸近線相切,則a的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線=1(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于(  )
A.B.2 C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是 (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn)的橢圓C: 的一個(gè)焦點(diǎn)為為橢圓C上一點(diǎn),△MOF2的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點(diǎn),且以線段AB為直徑的圓恰好過原點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案