已知sin(
π
4
+x)=
3
5
,則sin2x的值為( 。
A、
7
25
B、-
7
25
C、-
24
25
D、
24
25
考點:二倍角的正弦
專題:三角函數(shù)的求值
分析:根據(jù)sin2x=-cos(2x+
π
2
)=-[1-2sin2(x+
π
4
)
],把sin(
π
4
+x)=
3
5
代入,運算求得結(jié)果.
解答: 解:∵sin(
π
4
+x)=
3
5
,
∴sin2x=-cos(2x+
π
2
)=-[1-2sin2(x+
π
4
)
]=2sin2(x+
π
4
)
-1=2×
9
25
-1=-
7
25
,
故選:B.
點評:本題主要考查二倍角公式、誘導(dǎo)公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的最小正周期為
3
,最小值為-2,圖象過(
9
,0),求:
(1)該函數(shù)的解析式;
(2)若x∈[0,
π
3
],求f(x)的值域;
(3)若x∈[0,
π
3
],且g(x)=f(x)-a有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-2y2=4的兩條準(zhǔn)線間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P1:?x0∈R,x02+x0+1<0;P2:?x∈[1,2],x2-1≥0.以下命題為真命題的是( 。
A、¬P1∧¬P2
B、P1∨¬P2
C、¬P1∧P2
D、P1∧P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l1:ax-y+b=0與直線l2:bx+y-a=0,(ab≠0)的圖象應(yīng)是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
,那么“
a
b
=0
”是“向量
a
b
互相垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x2-
1
3
x3
在區(qū)間[0,6]上的最大值是( 。
A、
32
3
B、
16
3
C、12
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=2,則1-2sin2θ=(  )
A、-
2
5
5
B、-
3
5
C、-
4
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知4x≤(
1
4
x-2≤4x+10,求函數(shù)y=(
1
2
x的值域.

查看答案和解析>>

同步練習(xí)冊答案