【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300名學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:,,,,,估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率;

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的毎周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.

男生

女生

總計(jì)

每周平均體育運(yùn)動(dòng)時(shí)間不超過(guò)4小時(shí)

每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)

總計(jì)

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

【答案】190位;(20.75;(3)聯(lián)表見(jiàn)解析,有

【解析】

1)按照女生占學(xué)生數(shù)的比例,即可求解;

2)根據(jù)直方圖得出頻率,即可求解;

3)算出列聯(lián)表數(shù)據(jù),利用獨(dú)立性檢驗(yàn)求解即可.

1,

∴應(yīng)收集90位女生的樣本數(shù)據(jù).

2)由頻率分布直方圖可得,

∴該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率為0.75.

3)由(2)知,300位學(xué)生中有人每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),75人每周平均體育運(yùn)動(dòng)時(shí)間不超過(guò)4小時(shí),

又因?yàn)闃颖緮?shù)據(jù)中有210份是關(guān)于男生的,90份是關(guān)于女生的,所以每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表如下:

男生

女生

總計(jì)

每周平均體育運(yùn)動(dòng)時(shí)間不超過(guò)4小時(shí)

45

30

75

每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)

165

60

225

總計(jì)

210

90

300

∴有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合是滿(mǎn)足下列性質(zhì)的函數(shù)的全體,存在實(shí)數(shù),對(duì)于定義域內(nèi)的任意均有成立,稱(chēng)數(shù)對(duì)為函數(shù)的“伴隨數(shù)對(duì)”.

(1)判斷是否屬于集合,并說(shuō)明理由;

(2)若函數(shù),求滿(mǎn)足條件的函數(shù)的所有“伴隨數(shù)對(duì)”;

(3)若,都是函數(shù)的“伴隨數(shù)對(duì)”,當(dāng)時(shí),;當(dāng)時(shí),.求當(dāng)時(shí),函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列滿(mǎn)足:,,求的通項(xiàng)公式;

3)在第(2)問(wèn)的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開(kāi)”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了人,他們年齡的頻數(shù)分布及支持生育二胎人數(shù)如下表:

年齡

頻數(shù)

支持“生二胎”

1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問(wèn)是否有的把握認(rèn)為以歲為分界點(diǎn)對(duì)“生育二胎放開(kāi)”政策的支持度有差異;

年齡不低于歲的人數(shù)

年齡低于歲的人數(shù)

合計(jì)

支持

不支持

合計(jì)

2)若對(duì)年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開(kāi)”的概率是多少?

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周率是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計(jì)算方法.下面做一個(gè)游戲:讓大家各自隨意寫(xiě)下兩個(gè)小于1的正數(shù)然后請(qǐng)他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個(gè)銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個(gè)人的結(jié)論記錄下來(lái)就能算出圓周率的近似值.假設(shè)有個(gè)人說(shuō)“能”,而有個(gè)人說(shuō)“不能”,那么應(yīng)用你學(xué)過(guò)的知識(shí)可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的坐標(biāo)方程為,若直線(xiàn)與曲線(xiàn)相切.

(1)求曲線(xiàn)的極坐標(biāo)方程;

(2)在曲線(xiàn)上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿(mǎn)足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在位于城市A南偏西相距100海里的B處,一股臺(tái)風(fēng)沿著正東方向襲來(lái),風(fēng)速為120海里/小時(shí),臺(tái)風(fēng)影響的半徑為海里

1)若,求臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間(精確到1分鐘)?

2)若臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間不超過(guò)1小時(shí),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為,.三角形的兩條邊,所在直線(xiàn)的斜率之積是.

1)求點(diǎn)的軌跡方程;

2)設(shè)直線(xiàn)方程為,直線(xiàn)方程為,直線(xiàn),點(diǎn),關(guān)于軸對(duì)稱(chēng),直線(xiàn)軸相交于點(diǎn).的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為確定下一年度投入某種產(chǎn)品的生產(chǎn)所需的資金,需了解每投入2千萬(wàn)資金后,工人人數(shù)(單位:百人)對(duì)年產(chǎn)能(單位:千萬(wàn)元)的影響,對(duì)投入的人力和年產(chǎn)能的數(shù)據(jù)作了初步處理,得到散點(diǎn)圖和統(tǒng)計(jì)量表.

1)根據(jù)散點(diǎn)圖判斷:哪一個(gè)適宜作為年產(chǎn)能關(guān)于投入的人力的回歸方程類(lèi)型?并說(shuō)明理由?

2)根據(jù)(1)的判斷結(jié)果及相關(guān)的計(jì)算數(shù)據(jù),建立關(guān)于的回歸方程;

3)現(xiàn)該企業(yè)共有2000名生產(chǎn)工人,資金非常充足,為了使得年產(chǎn)能達(dá)到最大值,則下一年度共需投入多少資金(單位:千萬(wàn)元)?

附注:對(duì)于一組數(shù)據(jù),,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,(說(shuō)明:的導(dǎo)函數(shù)為)

查看答案和解析>>

同步練習(xí)冊(cè)答案