(滿分14分)

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n,an+Sn=4096.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)數(shù)列{log2an}的前n項(xiàng)和為Tn,求數(shù)列{Tn}從第幾項(xiàng)起Tn<-12.

(1) 由于數(shù)列{an}滿足:an+Sn=4096,當(dāng)n=1時(shí),a1=2048; 當(dāng)n≥2時(shí),an-1+Sn=4096,相減,則:an=an-1,(n≥2),∴{an}是以2048為首項(xiàng),以為公比的等比數(shù)列;

∴an=2048=212-n , n=1時(shí)適合。故{an}的通項(xiàng)為an=212-n,(n∈N*)

(2) ∵an=212-n , ∴l(xiāng)og2 an=log2212-n=12-n,∴{ log2 an }是以11為首項(xiàng),以-1為公差的等差數(shù)列,∴{ log2 an }的前n項(xiàng)和為Tn==,令Tn<-12,

即23n-n2<-12×2,∴n2-23n-24>0,(n-24)(n+1)>0,又n∈N*,∴n>24,即對(duì)數(shù)列{Tn}從第25項(xiàng)起滿足Tn<-12 .


解析:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題

(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

 (I)證明:函數(shù)是集合M中的元素;

 (II)證明:函數(shù)具有下面的性質(zhì):對(duì)于任意,都存在,使得等式成立。 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

吉林省吉林一中2011屆高三下學(xué)期沖刺試題一(數(shù)學(xué)理).doc
 

(本小題滿分14分)

設(shè)橢圓的左右焦點(diǎn)分別為、,是橢圓上的一點(diǎn),,坐標(biāo)原點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)設(shè)是橢圓上的一點(diǎn),過點(diǎn)的直線交軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

        設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;

②函數(shù)的導(dǎo)數(shù)滿足

   (I)判斷函數(shù)是否是集合M中的元素,并說明理由;

   (II)集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意[m,n],都存在,使得等式成立。試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;

   (III)設(shè)x1是方程的實(shí)數(shù)根,求證:對(duì)于定義域中任意的x2,x3,當(dāng)時(shí),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

吉林省吉林一中2011屆高三下學(xué)期沖刺試題一(數(shù)學(xué)理).doc
    • <menu id="zzqpf"><samp id="zzqpf"><small id="zzqpf"></small></samp></menu>
      • <menuitem id="zzqpf"></menuitem>
        <dfn id="zzqpf"></dfn>
        <label id="zzqpf"><tt id="zzqpf"><small id="zzqpf"></small></tt></label>
         

        (本小題滿分14分)

        設(shè)函數(shù),方程有唯一解,其中實(shí)數(shù)為常數(shù),,

        (1)求的表達(dá)式;

        (2)求的值;

        (3)若且,求證:

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:

        (本小題滿分14分)設(shè)數(shù)列的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù) 的圖象上.

        (Ⅰ)求的值,猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明;

        (Ⅱ)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),(),(,,),(,,);(),(,),(,,),(,,);(),…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為,求的值;

        查看答案和解析>>

        同步練習(xí)冊(cè)答案
      • <menuitem id="zzqpf"><ins id="zzqpf"><thead id="zzqpf"></thead></ins></menuitem>