11.已知直線l與圓O:x2+y2=1相交于A,B兩點(diǎn),且|AB|=$\sqrt{3}$,則 $\overrightarrow{OA}$•$\overrightarrow{OB}$的值是( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{4}$D.0

分析 直線與圓有兩個(gè)交點(diǎn),知道弦長(zhǎng)、半徑,確定∠AOB的大小,即可求得 $\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

解答 解:依題意可知角∠AOB的一半的正弦值,
即sin ($\frac{1}{2}$∠AOB)=$\frac{\sqrt{3}}{2}$,
∴∠AOB=120°,
則$\overrightarrow{OA}•\overrightarrow{OB}$=1×1×cos120°=-$\frac{1}{2}$,
故選:A.

點(diǎn)評(píng) 本題考查平面向量數(shù)量積的運(yùn)算,直線與圓的位置關(guān)系,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=f'(2){x^3}+\frac{1}{x}$,則f(2)=( 。
A.$-\frac{1}{4}$B.$\frac{1}{44}$C.$\frac{15}{22}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}滿足a1=33,an+1-an=2n,則$\frac{2{a}_{n}}{n}$的最小值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線:x-y+m=0與圓C:x2+y2=4相交于A,B兩點(diǎn),且弦AB的長(zhǎng)為2$\sqrt{3}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線x-2y+2m=0與坐標(biāo)軸圍成的三角形的面積不小于1,則實(shí)數(shù)m的取值范圍為(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(理)如圖在四面體OABC中,OA,OB,OC兩兩垂直,且OB=OC=3,OA=4,給出如下判斷:
①存在點(diǎn)D(O點(diǎn)除外),使得四面體DABC有三個(gè)面是直角三角形;
②存在點(diǎn)D,使得點(diǎn)O在四面體DABC外接球的球面上;
③存在唯一的點(diǎn)D使得OD⊥平面ABC;
④存在點(diǎn)D,使得四面體DABC是正棱錐;
⑤存在無數(shù)個(gè)點(diǎn)D,使得AD與BC垂直且相等.
其中正確命題的序號(hào)是①②④⑤(把你認(rèn)為正確命題的序號(hào)填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)$f(x)=1-2x,g[f(x)]=\frac{{{x^2}-1}}{x^2}(x≠0)$,則g(3)=( 。
A.1B.0C.$\frac{8}{9}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=2x-y的最小值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=|sinx|•cosx,則下列說法正確的是( 。
A.f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱B.f(x)的周期為π
C.若|f(x1)|=|f(x2)|,則x1=x2+2kπ(k∈Z)D.f(x)在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊(cè)答案