7.已知a>0,b>0,且4a-b≥2,則$\frac{1}{a}-\frac{1}$的最大值為$\frac{1}{2}$.

分析 由題意,4a≥b+2>2,a>$\frac{1}{2}$,$\frac{1}$≥$\frac{1}{4a-2}$,可得$\frac{1}{a}-\frac{1}$≤$\frac{1}{a}$-$\frac{1}{4a-2}$,令y=$\frac{1}{a}$-$\frac{1}{4a-2}$,求導(dǎo)數(shù)確定函數(shù)的單調(diào)性,求最值,即可得出結(jié)論.

解答 解:由題意,4a≥b+2>2,a>$\frac{1}{2}$,$\frac{1}$≥$\frac{1}{4a-2}$,
∴$\frac{1}{a}-\frac{1}$≤$\frac{1}{a}$-$\frac{1}{4a-2}$
令y=$\frac{1}{a}$-$\frac{1}{4a-2}$
則y′=-$\frac{1}{{a}^{2}}$+$\frac{4}{(4a-2)^{2}}$=$\frac{-4(3a-1)(a-1)}{{a}^{2}(4a-2)^{2}}$,
∴$\frac{1}{2}<a<1$時(shí),y′>0,函數(shù)單調(diào)遞增,a>1時(shí),y′<0,函數(shù)單調(diào)遞減,
∴a=1時(shí),ymax=$\frac{1}{2}$,
∴$\frac{1}{a}-\frac{1}$≤$\frac{1}{2}$,
故答案為$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性與最值,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線(xiàn)C的極坐標(biāo)方程為p2cos2θ+p2sinθ-2psinθ-3=0
(1)求直線(xiàn)l的極坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知AB是⊙O的直徑,直線(xiàn)CD與⊙O相切于點(diǎn)C,AD⊥CD.
(1)求證:∠CAD=∠BAC;
(2)若AD=4,AC=6,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$,求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在$\frac{8}{3}$和$\frac{27}{2}$之間插入三個(gè)數(shù),使這五個(gè)數(shù)成等比數(shù)列,則使插入三個(gè)數(shù)的積為(  )
A.36B.36或-36C.216D.216或-216

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若數(shù)列{an}滿(mǎn)足:${a_1}=\frac{1}{3}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$,n≥2且n∈N,則a2016=(  )
A.$\frac{1}{3}$B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,面積為S,若S+a2=(b+c)2,則cosA等于-$\frac{15}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某四面體的三視圖如圖所示,則該四面體的四個(gè)面中面積最大的為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=lnx+x2-ax(a∈R)
(Ⅰ)若函數(shù)f(x)在區(qū)間[${\frac{1}{4}$,2]上存在單調(diào)增區(qū)間,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+2ln$\frac{ax+2}{{6\sqrt{x}}}$,對(duì)于任意a∈(2,4),總存在x∈[$\frac{3}{2}$,2],使g(x)>k(4-a2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案