已知函數(shù)是自然對(duì)數(shù)的底數(shù),).
(Ⅰ)求的單調(diào)區(qū)間、最大值;
(Ⅱ)討論關(guān)于的方程根的個(gè)數(shù)。
解法一 (Ⅰ)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(Ⅱ)當(dāng)時(shí),函數(shù)的圖象有兩個(gè)交點(diǎn),即方程有兩個(gè)根.
當(dāng)時(shí),函數(shù)的圖象有一個(gè)交點(diǎn),即方程有一個(gè)根.
顯然當(dāng)時(shí),方程沒(méi)有根.
(Ⅰ)
當(dāng)時(shí),;當(dāng)時(shí)
所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

(Ⅱ)

通過(guò)圖象可對(duì)進(jìn)行討論:
當(dāng)時(shí),函數(shù)的圖象有兩個(gè)交點(diǎn),即方程有兩個(gè)根.
當(dāng)時(shí),函數(shù)的圖象有一個(gè)交點(diǎn),即方程有一個(gè)根.
顯然當(dāng)時(shí),方程沒(méi)有根.
解法二 (Ⅰ),
,解得,
當(dāng)時(shí),,單調(diào)遞減
所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
最大值為
(Ⅱ)令   
(1)當(dāng)時(shí),,則,
所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015732018510.png" style="vertical-align:middle;" />, 所以
因此上單調(diào)遞增.
(2)當(dāng)時(shí),當(dāng)時(shí),,則,
所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015732143626.png" style="vertical-align:middle;" />,,又
所以 所以
因此上單調(diào)遞減.
綜合(1)(2)可知 當(dāng)時(shí),,
當(dāng),即時(shí),沒(méi)有零點(diǎn),
故關(guān)于的方程根的個(gè)數(shù)為0;
當(dāng),即時(shí),只有一個(gè)零點(diǎn),
故關(guān)于的方程根的個(gè)數(shù)為1;
當(dāng),即時(shí),
①當(dāng)時(shí),由(Ⅰ)知

要使,只需使,即;
②當(dāng)時(shí),由(Ⅰ)知

要使,只需使,即;
所以當(dāng)時(shí),有兩個(gè)零點(diǎn),故關(guān)于的方程根的個(gè)數(shù)為2;
綜上所述:
當(dāng)時(shí),關(guān)于的方程根的個(gè)數(shù)為0;
當(dāng)時(shí),關(guān)于的方程根的個(gè)數(shù)為1;
當(dāng)時(shí),關(guān)于的方程根的個(gè)數(shù)為2.
【考點(diǎn)定位】本題考查了函數(shù)的單調(diào)性、函數(shù)的最值等主干知識(shí),考查了數(shù)形結(jié)合思想、分類(lèi)討論思想、函數(shù)與方程思想的綜合應(yīng)用.第一問(wèn)的研究為第二問(wèn)進(jìn)行數(shù)形結(jié)合鋪平了“道路”,使的相對(duì)位置關(guān)系更明晰.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)F(x )=x2+aln(x+1)
(I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知的導(dǎo)函數(shù),且,設(shè)

(Ⅰ)討論在區(qū)間上的單調(diào)性;
(Ⅱ)求證:
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022002310479.png" style="vertical-align:middle;" />,且函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),當(dāng)時(shí),,(其中的導(dǎo)函數(shù)),若,則的大小關(guān)系是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值;
(Ⅱ)若時(shí),總是區(qū)間上的增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),其中為實(shí)數(shù).
(1)若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍;
(2)若上是單調(diào)增函數(shù),試求的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是定義在上的奇函數(shù),,則不等式的解集是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),判斷的大小,并說(shuō)明理由;
(3)求證:當(dāng)時(shí),關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案