已知A,B分別是橢圓C1:+=1的左、右頂點,P是橢圓上異于A,B的任意一點,Q是雙曲線C2:-=1上異于A,B的任意一點,a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓,經(jīng)過橢圓的右焦點F及上頂點B,過圓外一點傾斜角為的直線交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當點P在第一象限,且時,求點M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,△ABC的頂點B、C的坐標為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設頂點A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設曲線E與y軸負半軸的交點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的中心為原點O,長軸在x軸上,離心率e=,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應的圓Q的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求·的取值范圍;
(3)若B點關于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線C的方程為-=1(a>0,b>0),離心率e=,頂點到漸近線的距離為.
(1)求雙曲線C的方程;
(2)如圖,P是雙曲線C上一點,A、B兩點在雙曲線C的兩條漸近線上,且分別位于第一、二象限.若=λ,λ∈.求△AOB的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓的圓心在坐標原點O,且恰好與直線相切.
(1)求圓的標準方程;
(2)設點A為圓上一動點,AN軸于N,若動點Q滿足(其中m為非零常數(shù)),試求動點的軌跡方程.
(3)在(2)的結論下,當時,得到動點Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點,線段AB的垂直平分線與x軸相交于點P(t,0),求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com