19.執(zhí)行如圖所示的程序框圖,輸出P的值為( 。
A.-1B.1C.0D.2016

分析 模擬執(zhí)行程序框圖的運(yùn)行過程,寫出每次循環(huán)得到的P,i的值,當(dāng)i=2017>2016時(shí),滿足條件,終止循環(huán),輸出P的值.

解答 解:執(zhí)行程序框圖,有p=0,i=1,P=0+cosπ=-1,
i=2,不滿足條件i>2016?,有P=-1+cos2π=0,
i=3,不滿足條件i>2016,有P=0+cos3π=-1,
,…,
i=2016,不滿足條件i>2016,有P=-1+cos2016π=0,
i=2017,滿足條件i>2016,輸出P的值為0.
故選:C.

點(diǎn)評 本題考查了程序框圖和算法的應(yīng)用問題,也考查了分析問題與解答問題的能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知α∈(0,π),且sinα+cosα=$\frac{\sqrt{2}}{2}$,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是$\frac{2π}{3}$夾角為的單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(1)把直線l的參數(shù)方程化為極坐標(biāo)方程,把曲線C的極坐標(biāo)方程化為普通方程;
(2)已知點(diǎn)P(1,0),直線l與曲線C交于M、N兩點(diǎn),求|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對稱軸.過點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定義在R上的二次函數(shù)f(x)為偶函數(shù),且滿足f(1)=6,f(3)=2.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[a,b]上值域?yàn)閇2a,2b],試求所有符合題意的[a,b].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC中,AB=5,BC=3,CA=7,若點(diǎn)D滿足$\overrightarrow{BD}=2\overrightarrow{DC}$,則△ABD的面積為( 。
A.$\frac{{5\sqrt{3}}}{2}$B.$\frac{5}{2}$C.$5\sqrt{3}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=2,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=4sinαcosα-5sinα-5cosα.
(1)若f(x)=1,求sinα+cosα的值;
(2)當(dāng)$α∈[{0,\frac{π}{2}}]$時(shí),求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案