14.從2016名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競(jìng)賽,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從2016人中剔除16人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2016人每人入選的概率是(  )
A.不全相等B.均不相等
C.都相等且為$\frac{25}{1008}$D.都相等且為$\frac{1}{40}$

分析 根據(jù)簡(jiǎn)單隨機(jī)抽樣與系統(tǒng)抽樣方法的定義,結(jié)合概率的意義,即可判斷每個(gè)人入選的概率是多少.

解答 解:根據(jù)簡(jiǎn)單隨機(jī)抽樣與系統(tǒng)抽樣方法的特點(diǎn),得:
每個(gè)人入選的概率都相等,且等于$\frac{50}{2016}$=$\frac{25}{1008}$.
故選:C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單隨機(jī)抽樣與系統(tǒng)抽樣方法的應(yīng)用問題,也考查了概率的意義問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)點(diǎn)P在直線l:2x-4y+3=0上,過點(diǎn)P作圓C的切線,切點(diǎn)記為M,求使|PM|最小的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)$\frac{1-i}{z}$=4+2i(i為虛數(shù)單位),則復(fù)數(shù)z在平面上的對(duì)應(yīng)點(diǎn)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,已知AC=4,BC=5.
(1)若∠A=60°,求cosB的值;
(2)若cos(A-B)=$\frac{7}{8}$,點(diǎn)D在邊BC上,滿足DB=DA,求CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.△ABC的內(nèi)角A、B、C對(duì)邊分別為a,b,c且滿足$\frac{a}{6}$=$\frac{4}$=$\frac{c}{3}$,則$\frac{sinC-sinA}{sinA+sinB+sinC}$=(  )
A.-$\frac{3}{13}$B.$\frac{12}{7}$C.$\frac{3}{13}$D.-$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將一枚均勻的硬幣連擲4次,計(jì)算:
(1)4次都是正面朝上的概率;
(2)至少有一次正面朝上的概率;
(3)至多有一次正面朝上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某外語學(xué)校的一個(gè)社團(tuán)中有7名同學(xué),其中2人只會(huì)法語,2人只會(huì)英語,3人既會(huì)法語又會(huì)英語,現(xiàn)選派3人到法國(guó)的學(xué)校交流訪問.
(1)在選派的3人中恰有2人會(huì)法語的概率;
(2)在選派的3人中既會(huì)法語又會(huì)英語的人數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{xn}中,x1=10,xn=log2(xn-1-2),則數(shù)列{xn}的第2項(xiàng)是3所有項(xiàng)和T=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市在中學(xué)生綜合素質(zhì)評(píng)價(jià)中,將其測(cè)評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí).其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)如表:
等級(jí) 優(yōu)秀 合格 不合格
 男生(人) 15 x 5
 女生(人) 15 3y
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
男生女生總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高一學(xué)生中隨機(jī)抽取3人.
①求所選3人中恰有2人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
②記X表示這3個(gè)人中綜合速度評(píng)價(jià)等級(jí)為“優(yōu)秀”的個(gè)數(shù),求X的數(shù)學(xué)期望.
參考數(shù)據(jù)與公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
 P(K2>k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.0246.635

查看答案和解析>>

同步練習(xí)冊(cè)答案