【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x(1﹣x).
(1)在如圖所給直角坐標系中畫出函數(shù)f(x)的草圖,并直接寫出函數(shù)f(x)的零點;
(2)求出函數(shù)f(x)的解析式.

【答案】解:(1)當x≥0時,由f(x)=2x(1﹣x)=0得x=0或x=1,
∵f(x)是定義在R上的奇函數(shù),
∴當x<0時,函數(shù)的零點為﹣1,
即函數(shù)f(x)的零點為0,﹣1,1.
(2)若x<0,則﹣x>0,
∵x≥0時,f(x)=2x(1﹣x).
∴當﹣x>0時,f(﹣x)=﹣2x(1+x).
∵f(x)是定義在R上的奇函數(shù),
∴f(﹣x)=﹣2x(1+x)=﹣f(x),
即f(x)=2x(1+x),x<0.
即f(x)=

【解析】(1)根據(jù)函數(shù)奇偶性的性質(zhì)以及函數(shù)零點的定義進行求解即可.
(2)根據(jù)函數(shù)奇偶性的性質(zhì)進行轉(zhuǎn)化求解即可.
【考點精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關知識點,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知PA垂直于矩形ABCD所在的平面,M,N分別是AB,PC的中點,若∠PDA=45°,
(1)求證:MN∥平面PAD且MN⊥平面PCD.
(2)探究矩形ABCD滿足什么條件時,有PC⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如右圖所示,已知點的重心,過點作直線與兩邊分別交于兩點,且,則的最小值為 ( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】凸函數(shù)的性質(zhì)定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內(nèi)的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某問答游戲的規(guī)則是:共5道選擇題,基礎分為50分,每答錯一道題扣10分,答對不扣分.試分別用列表法、圖象法、解析法表示一個參與者的得分y與答錯題目道數(shù)x(x∈{0,1,2,3,4,5})之間的函數(shù)關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經(jīng)營經(jīng)驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量, ,設函數(shù),且的圖象過點和點.

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個單位后得到函數(shù)的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上不單調(diào),求實數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[﹣1,1]上的最大值,證明:當|a|≥2時,M(a,b)≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線的準線為,取過焦點且平行于軸的直線與拋物線交于不同的兩點,過作圓心為的圓,使拋物線上其余點均在圓外,且. 

(Ⅰ)求拋物線和圓的方程;

(Ⅱ)過點作直線與拋物線和圓依次交于,求的最小值.

查看答案和解析>>

同步練習冊答案