4.過圓(x-1)2+(y+2)2=16上一點(1,2)的圓的切線方程是y=2.

分析 由題意畫出圖形,數(shù)形結(jié)合即可求得過圓(x-1)2+(y+2)2=16上一點(1,2)的圓的切線方程.

解答 解:由圓(x-1)2+(y+2)2=16,得圓心坐標為C(1,-2),
又點P(1,2),
∴過點P且與圓(x-1)2+(y+2)2=16相切得直線平行于x軸,
直線方程為y=2.
故答案為:y=2.

點評 本題考查圓的切線方程,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x-2y+1=0平行,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點為F(-c,0)(c>0),P為雙曲線C右支上的一點,線段PF與圓x2+y2+$\frac{2c}{3}$x+$\frac{a^2}{9}$=0相切于點Q,且$\overrightarrow{PF}$+3$\overrightarrow{FQ}$=$\overrightarrow 0$,則雙曲線C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)平面向量$\overrightarrow a=\overrightarrow{OA}$,定義以x軸非負半軸為始邊,逆時針方向為正方向,OA為終邊的角稱為向量$\overrightarrow a$的幅角.若r1是向量$\overrightarrow a$的模,r2是向量$\overrightarrow b$的模,$\overrightarrow a$的幅角是θ1,$\overrightarrow b$的幅角是θ2,定義$\overrightarrow a?\overrightarrow b$的結(jié)果仍是向量,它的模為r1r2,它的幅角為θ12.給出$\overrightarrow a=({x_1},{y_1}),\overrightarrow b=({x_2},{y_2})$.試用$\overrightarrow a$、$\overrightarrow b$的坐標表示$\overrightarrow a?\overrightarrow b$的坐標,結(jié)果為$\overrightarrow a?\overrightarrow b=({x_1}{x_2}-{y_1}{y_2},{x_1}{y_2}+{x_2}{y_1})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,滿足acosB+bcosA=2ccosC.
(Ⅰ)求角C的大。
(Ⅱ)若△ABC的面積為2$\sqrt{3}$,求邊長c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2y+4≥0}\\{x+y-2≤0}\\{y≥0}\\{\;}\end{array}\right.$,若目標函數(shù)z=ax-y僅在點(0,2)處取得最小值,則a的取值范圍是( 。
A.(-$\frac{1}{2}$,1)B.(-∞,-1)∪($\frac{1}{2}$,+∞)C.(-1,$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則輸入的實數(shù)x的值是( 。
A.-2B.2C.7D.-2或7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點(-$\sqrt{2}$,0)到雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的距離為$\frac{\sqrt{5}}{5}$,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{10}}{3}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=sinx,g(x)=$\sqrt{3}$cosx,直線x=m與f(x),g(x)的圖象分別交于M,N兩點,則|MN|的最大值為( 。
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4

查看答案和解析>>

同步練習冊答案