已知函數(shù)f(x)=2x+x,g(x)=log3x+x,h(x)=x-
1
x
的零點依次為a,b,c,則( 。
A、a<b<c
B、c<b<a
C、c<a<b
D、b<a<c
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先,在同一坐標(biāo)系中作出函數(shù)y=x  ,y=-log3x=-
lnx
ln3
  ,y=x-
1
2
的圖象,然后觀察得到它們圖象的交點的橫坐標(biāo),從而得到大小關(guān)系.
解答: 解:函數(shù)f(x)=2x+x的零點為a,
也就是說函數(shù)y=x, y=-lo
g
x
3
=-
lnx
ln3
,圖象的交點的橫坐標(biāo),
同理,g(x)=log3x+x,h(x)=x-
1
x
的零點
也就是函數(shù)y=x  ,y=-log3x=-
lnx
ln3
  ,y=x-
1
2
的圖象的交點的橫坐標(biāo),
在同一坐標(biāo)系中作出函數(shù)y=x  ,y=-log3x=-
lnx
ln3
  ,y=x-
1
2
的圖象,
如下圖所示:


故有a<b<c,
故選:A.
點評:本題主要考查數(shù)形結(jié)合思想在解題中的靈活運用,注意常見函數(shù)的圖象及其性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式f(x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只昆蟲在邊長分別為5,12,13的三角形區(qū)域內(nèi)隨機爬行,則其到三角形頂點的距離小于2的地方的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖程序框圖中,輸入n=5,按程序運行后輸出的結(jié)果是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|x2-1<0},B={x|x(x-2)≥0},則A∩(∁UB)=(  )
A、{x|0<x<2}
B、{x|0<x<1}
C、{x|0≤x<1}
D、{x|-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=1,b=2,則輸出的a的值為( 。
A、7B、9C、11D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移
π
6
個單位后,得到一個關(guān)于y軸對稱的圖象,則φ的一個可能取值為(  )
A、
π
3
B、
π
6
C、-
π
3
D、-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=|f(x)|存在互不相等的正整數(shù)m,n,k,使得[f(n)]2=f(m)f(k),則不屬于集合A的函數(shù)是( 。
A、f(x)=2x-1
B、f(x)=x2
C、f(x)=2x+1
D、f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(a+1)x+lnx,g(x)=x2-2bx-
5
4

(Ⅰ)當(dāng)a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a<0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
2
時,對任意x1∈(0,2],存在x2∈[1,2],使得f(x1)≤g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案