【題目】已知點(diǎn)是直線與橢圓的一個(gè)公共點(diǎn), 分別為該橢圓的左右焦點(diǎn),設(shè)取得最小值時(shí)橢圓為.
(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(2)已知為橢圓上關(guān)于軸對(duì)稱的兩點(diǎn), 是橢圓上異于的任意一點(diǎn),直線分別與軸交于點(diǎn),試判斷是否為定值;如果為定值,求出該定值;如果不是,請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=log (x2﹣2x)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,0)
B.(﹣∞,1)
C.(2,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對(duì)于一切實(shí)數(shù)x,y均有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0,則當(dāng)x∈(0, ),不等式f(x)+2<logax恒成立時(shí),實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立.
(1)求紅隊(duì)至少兩名隊(duì)員獲勝的概率;
(2)用ξ表示紅隊(duì)隊(duì)員獲勝的總盤數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法正確的是( )
①函數(shù)f(x)的定義域是R,則“x∈R,f(x+1)>f(x)”是“函數(shù)f(x)為增函數(shù)”的充要條件
②命題“x∈R,( )x>0”的否定是“x∈R,( )x≤0”
③命題“若x=2,則x2﹣3x+2=0”的逆否命題是“若x2﹣3x+2≠0,則x≠2”
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù).則p∧q為真命題.
A.①②③④
B.①③
C.①③④
D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求a,b;
(2)求f(log2x)的最小值及相應(yīng) x的值;
(3)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,能推斷這個(gè)幾何體可能是三棱臺(tái)的是( )
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1Bl=1,AB=2,BlCl=1.5,BC=3,A1C1=2,AC=3
C.AlBl=1,AB=2,B1Cl=1.5,BC=3,AlCl=2,AC=4
D.AB=A1B1 , BC=B1C1 , CA=C1A1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com