已知命題p:不等式|x-1|>m-1的解集為R,命題q:f(x)=-(5-2m)x是減函數(shù),若p或q為真命題,p且q為假命題,求實(shí)數(shù)m的取值范圍.

解:不等式|x-1|>m-1的解集為R,須m-1<0,即p是真 命題,m<1
f(x)=-(5-2m)x是減函數(shù),須5-2m>1即q是真命題,m<2,
由于p或q為真命題,p且q為假命題,故p、q中一個(gè)真,另一個(gè)為假命題
因此,1≤m<2.
分析:由絕對(duì)值得意義知,p:即 m<1;由指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)得,q:即 m<2.從而求得當(dāng)這兩個(gè)命題有且只有一個(gè)正確時(shí)實(shí)數(shù)m的取值范圍.
點(diǎn)評(píng):本題考查在數(shù)軸上理解絕對(duì)值的幾何意義,指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),分類討論思想,化簡(jiǎn)這兩個(gè)命題是解題的關(guān)鍵.屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

21、已知命題p:不等式|x|+|x+1|>m的解集為R,命題q:函數(shù)f(x)=x2-2mx+1在(2,+∞)上是增函數(shù).若p∨q為真命題,p∧q為假命題,則實(shí)數(shù)m的取值范圍是
{m|1≤m≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:不等式|x-1|>m-1的解集為R,命題q:f(x)=(5-2m)x是(-∞,+∞)上的增函數(shù),若p或q為真命題,p且q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:不等式ex>m的解集為R,命題q:f(x)=
2-m
x
在區(qū)間(0,+∞)上是減函數(shù),若命題“p或q”為真,命題“p且q”為假,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:不等式|x|+|x-1|>a的解集為R,命題q:f(x)=-(5-2a)x是減函數(shù),若p,q中有且僅有一個(gè)為真命題,則實(shí)數(shù)a的取值范圍是
[1,2)
[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:不等式-2x+m>1,x∈[-1,0]恒成立;命題q:函數(shù)y=log2[4x2+4(m-2)x+1]的定義域?yàn)椋?∞,+∞),若“p∨q”為真,“p∧q”為假,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案