在△ABC中,M是BC的中點(diǎn),AM=4,BC=10,則
AB
AC
=(  )
A、9B、-9C、21D、-21
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:因?yàn)镸是BC中點(diǎn),所以
AM
=
1
2
(
AB
+
AC
)
,
BC
=
AC
-
AB
,將兩式平方再變形相減解得所求.
解答: 解:∵M(jìn)是BC中點(diǎn),
AM
=
1
2
(
AB
+
AC
)
,
BC
=
AC
-
AB

兩式變形平方得,4
AM
2
=
AB
2
+
AC
2
+2
AB
AC
=64,
BC
2
=
AC
2
+
AB
2
-2
AC
AB
=100,
兩式相減得4
AC
AB
=-36,
AB
AC
=-9,
故選B.
點(diǎn)評(píng):本題考查了三角形法則以及三角形中線的向量表示、向量的數(shù)量積的運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知函數(shù)f(x)=
a•2x+a2-2
2x-1
(x∈R,x≠0)
,其中a為常數(shù),且a<0.
(1)若f(x)是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時(shí),求f(x)的反函數(shù);
(3)對(duì)于問題(1)中的A,當(dāng)a∈{a|a<0,a∉A}時(shí),不等式x2-10x+9<a(x-4)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左項(xiàng)點(diǎn)A的斜率為k的直線交橢圓于另一個(gè)點(diǎn)B,且點(diǎn)B在x軸上的身影恰好為右焦點(diǎn)F,若
1
3
<k<
4
5
,則橢圓離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若A=
π
3
,cosB=
3
5
,a=
3
,則b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在古希臘,畢達(dá)哥拉斯學(xué)派把1,3,6,10,15,…這些數(shù)叫做三角形數(shù),因?yàn)檫@些數(shù)目的點(diǎn)可以排成一個(gè)正三角形(如圖):

則第七個(gè)三角形數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2cosx+1的最大值是( 。
A、1B、-1C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-4x在點(diǎn)(1,-3)處的切線方程為( 。
A、x+y+2=0
B、x+y+1=0
C、2x-y+5=0
D、x-y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
y≤x
2x-3y≤0
x+y≤10
x-3y-a≤0
表示的平面區(qū)域是三角形,則a的取值范圍是( 。
A、a≥0或-10<a≤-6
B、-10<a≤-6
C、-10<a<-6
D、a≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=2sinx圖象上所有點(diǎn)向右平移
π
6
個(gè)單位,然后把所得圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),得到y(tǒng)=f(x)的圖象,則f(x)等于(  )
A、2sin(2x-
π
6
B、2sin(
x
2
-
π
6
C、2sin(2x-
π
3
D、2sin(
x
2
+
π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案