【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域為,函數(shù)的定義域為,值域為.
(1)求定義域和值域;
(2)試用單調(diào)性的定義法解決問題:若存在實數(shù),使得函數(shù)在上單調(diào)遞減,上單調(diào)遞增,求實數(shù)的取值范圍并用表示;
(3)是否存在實數(shù),使成立?若存在,求實數(shù)的取值范圍,若不存在,說明理由.
【答案】(1),;(2),;(3)存在,.
【解析】
(1)解不等式得定義域,由二次函數(shù)的性質(zhì)可得值域;
(2)假設(shè)存在,滿足題意,設(shè)且,作差,按單調(diào)性定義分析可得;
(3)求導(dǎo)函數(shù),分類討論,得出的單調(diào)性,從而求得值域,再由,列出不等式組,可得的取值范圍。
(1),解得,∴,即。
,又,∴,∴。
(2)假設(shè)存在,滿足題意,
設(shè)且,
,
顯然,因此當(dāng),,當(dāng),,
當(dāng),,因此,,
,,因此,,
綜上。,∴。
∴,。
(3),
若,則,是上的增函數(shù),時,,,即,
當(dāng)時,,∴,
若,則當(dāng)時,,單調(diào)遞減,時,,單調(diào)遞增,
若,則,,即,不滿足,
若,則當(dāng)時,遞減,∴
∴,解得,
綜上的取值范圍是。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:對任意實數(shù),都有;
(2)若,是否存在整數(shù),使得在上,恒有成立?若存在,請求出的最大值;若不存在,請說明理由.()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在一山坡處看對面山頂上的一座鐵塔,如圖所示,塔及所在的山崖可視為圖中的豎線,塔高為80米,山高為220米,為200米,圖中所示的山坡可視為直線且點在直線上,與水平地面的夾角為,.
(1)求塔尖到山坡的距離;(精確到米)
(2)問此同學(xué)(忽略身高)距離山崖的水平地面多高時,觀看塔的視角最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,,,平面截長方體得到一個矩形,且,.
(1)求截面把該長方體分成的兩部分體積之比;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),定義函數(shù),給出下列命題:①;②函數(shù)是奇函數(shù);③當(dāng)時,若,,總有成立,其中所有正確命題的序號是( )
A.②B.①②C.③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸為非負半軸為極軸,與坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(1)若直線與曲線有公共點,求傾斜角的取值范圍;
(2)設(shè)為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一點,過點作軸的垂線交軸于點,點滿足
(1)求動點的軌跡方程;
(2)設(shè)為直線上一點,為坐標(biāo)原點,且,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結(jié)論:
①曲線C恰好經(jīng)過6個整點(即橫、縱坐標(biāo)均為整數(shù)的點);
②曲線C上任意一點到原點的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com