【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

【答案】B

【解析】

通過莖葉圖找出甲的最大值及最小值求出極差判斷出A對;找出甲中間的兩個數(shù),求出這兩個數(shù)的平均數(shù)即數(shù)據(jù)的中位數(shù),判斷出D錯;根據(jù)圖的數(shù)據(jù)分布,判斷出甲的平均值比乙的平均值大,判斷出C對.

由莖葉圖知

甲的最大值為37,最小值為8,所以甲的極差為29,故A

甲中間的兩個數(shù)為22,24,所以甲的中位數(shù)為B不對

甲的命中個數(shù)集中在20而乙的命中個數(shù)集中在1020,所以甲的平均數(shù)大,故C

乙的數(shù)據(jù)中出現(xiàn)次數(shù)最多的是21,所以D

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為自然對數(shù)的底數(shù)).

(1)若處的切線過點,求實數(shù)的值;

(2)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當x>0時,證明 ;

(2)當x>-1且x0時,不等式 恒成立,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.(其中實數(shù)).

1)分別求出p,q中關于x的不等式的解集MN;

2)若pq的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,,則下列結論正確的是( )

A. 上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),得到曲線

B. 上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),得到曲線

C. 上各點的橫坐標縮短到原來的倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

D. 上各點的橫坐標伸長到原來的3倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, 分別為的中點.

(1)證明: 平面;

(2)證明:平面平面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線lkxy12k0(kR).

(1)證明:直線l過定點;

(2)若直線不經(jīng)過第四象限,求k的取值范圍;

(3)若直線lx軸負半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標原點),求S的最小值并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是兩條不同的直線,是三個不同的平面,給出下列四個命題:(1)若,那么;(2)若,,那么;(3)若,,那么;(4)若,,則,其中正確命題的序號是(

A.1)(2B.2)(3C.1)(3D.2)(4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:①越小,XY有關聯(lián)的可信度越小;②若兩個隨機變量的線性相關性越強,則相關系數(shù)r的值越接近于1;“若,則類比推出,“若,則;④命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是使用了“三段論”,推理形式錯誤.其中說法正確的有( )個

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案