在△ABC中,三邊a、b、c所對的角分別為A、B、C,若a2+b2-c2+
2
ab=0,則角C的大小為(  )
分析:利用余弦定理表示出cosC,將已知等式變形后代入求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù).
解答:解:∵a2+b2-c2+
2
ab=0,即a2+b2-c2=-
2
ab,
∴cosC=
a2+b2-c2
2ab
=
-
2
ab
2ab
=-
2
2
,
∵C為三角形的內(nèi)角,
∴C=
4

故選B
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a、b、c與面積S的關系是S=
1
4
(a2+b2-c2),則角C應為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a、b、c所對的角分別為A、B、C,已知a=2
3
,b=2,△ABC的面積S=
3
,則C=
π
6
6
π
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a,c,b成等差,則sinA的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a、b、c與面積S的關系式為S=
1
4
(a2+b2-c2),則角C=
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a,b,c成等差數(shù)列,B=30°,三角形ABC的面積為
1
2
,則b的值是(  )

查看答案和解析>>

同步練習冊答案