已知圓x2+y2=1,點(diǎn)A(1,0),△ABC內(nèi)接于圓,且∠BAC=60°,當(dāng)B、C在圓上運(yùn)動(dòng)時(shí),BC中點(diǎn)的軌跡方程是


  1. A.
    x2+y2=數(shù)學(xué)公式
  2. B.
    x2+y2=數(shù)學(xué)公式
  3. C.
    x2+y2=數(shù)學(xué)公式(x<數(shù)學(xué)公式
  4. D.
    x2+y2=數(shù)學(xué)公式(x<數(shù)學(xué)公式
D
分析:將圓周角為定值轉(zhuǎn)化為圓心角為定值,結(jié)合圓心距構(gòu)成的直角三角形得OD=,從而得BC中點(diǎn)的軌跡方程.
解答:解:設(shè)BC中點(diǎn)是D,
∵圓心角等于圓周角的一半,
∴∠BOD=60°,
在直角三角形BOD中,有OD=OB=,
故中點(diǎn)D的軌跡方程是:x2+y2=,
如圖,由角BAC的極限位置可得,x<,
故選D.
點(diǎn)評(píng):本題主要考查求軌跡方程,解決與平面幾何有關(guān)的軌跡問題時(shí),要充分考慮到圖形的幾何性質(zhì),這樣會(huì)使問題的解決簡便些.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1,點(diǎn)A(1,0),△ABC內(nèi)接于圓,且∠BAC=60°,當(dāng)B、C在圓上運(yùn)動(dòng)時(shí),BC中點(diǎn)的軌跡方程是( 。
A、x2+y2=
1
2
B、x2+y2=
1
4
C、x2+y2=
1
2
(x<
1
2
D、x2+y2=
1
4
(x<
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1與x軸的兩個(gè)交點(diǎn)為A、B,若圓內(nèi)的動(dòng)點(diǎn)P使|PA|、|PO|、|PB|成等比數(shù)列,則
PA
PB
的取值范圍為(  )
A、(0,
1
2
]
B、[-
1
2
,0)
C、(-
1
2
,0)
D、[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1與拋物線y=x2+h有公共點(diǎn),則實(shí)數(shù)h的取值范圍是
h∈[-
5
4
,1]
h∈[-
5
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1與x軸的兩個(gè)交點(diǎn)為A,B,若圓內(nèi)的動(dòng)點(diǎn)P使
PA
2
,
PO
2
,
PB
2
成等比數(shù)列(O為坐標(biāo)原點(diǎn)),則
PA
PB
的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1和直線y=2x+b相交于A,B兩點(diǎn),且OA,OB是x軸正方向沿逆時(shí)針分別旋轉(zhuǎn)α,β角而得,則cos(α+β)的值為( 。
A、
b+3
b2+5
B、
3
5
C、
3
b2+5
D、
3
5
|b|+15
5b2+25

查看答案和解析>>

同步練習(xí)冊(cè)答案