已知無(wú)窮等比數(shù)列{an}所有奇數(shù)項(xiàng)的和為36,偶數(shù)項(xiàng)的和為12,求此數(shù)列的首項(xiàng)和公比.
考點(diǎn):數(shù)列的求和,數(shù)列的極限
專題:等差數(shù)列與等比數(shù)列
分析:由題意設(shè)出無(wú)窮等比數(shù)列的首項(xiàng)和公比,由等比數(shù)列的前n項(xiàng)和分別求出奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的和后取極限,作比后求得等比數(shù)列的公比,進(jìn)一步代入求得首項(xiàng).
解答: 解:設(shè)數(shù)列{an}的首項(xiàng)為a1,公比為q(|q|<1),
依題意得:
lim
n→∞
a1(1-q2n)
1-q2
=
a1
1-q2
=36
  ①
lim
n→∞
a2(1-q2n)
1-q2
=
a2
1-q2
=12
  ②
兩式相除得q=
1
3

將q=
1
3
代入①得a1=32.
∴此數(shù)列的首項(xiàng)為32,公比為
1
3
點(diǎn)評(píng):本題考查了等比數(shù)列的前n項(xiàng)和,考查了數(shù)列的極限,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)和圓O:x2+y2=b2,過(guò)橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.
(1)若離心率為
5
3
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)距離為3,求橢圓C的方程;
(2)若橢圓上存在點(diǎn)P,使得∠APB=90°,求橢圓離心率e的取值范圍;
(3)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,求證:
a2
|ON|2
+
b2
|OM|2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
(1)
sin(540°-x)
tan(900°-x)
1
tan(450°-x)tan(810°-x)
cos(360°-x)
sin(-x)

(2)
sin(π-α)cos(3π-α)tan(-π-α)tan(α-2π)
tan(4π-α)sin(5π+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式kx2-2x+6k<0(k≠0)
(1)若不等式的解集為{x|x<-3或x>-2},求實(shí)數(shù)k的值;
(2)若不等式的解集為∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2x+4
4x+8

(Ⅰ)求f(x)的最大值;
(Ⅱ)證明:對(duì)于任意實(shí)數(shù)a、b,恒有f(a)<b2-3b+
21
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=-
2
3
,其通項(xiàng)an滿足an=-
1
an-1+2
(n≥2)
(1)計(jì)算a1,a2,a3,a4
(2)猜想an的表達(dá)式并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某興趣小組為了研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,分別到氣象站和醫(yī)院抄錄了1至6月份每月15日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日    期1月15日2月15日3月15日4月15日5月15日6月15日
晝夜溫差x(°C)8111312106
就診人數(shù)y(個(gè))162529262111
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是5月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)1至4月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性的回歸方程是否理想?
(參考數(shù)值:
4
i=1
(xi-
.
x
)(yi-
.
y
)=36,公式:
b
=
n
i=1
(xi-
.
y
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足(1+2i)z=4+3i,求z及
z
.
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos43°cos13°+sin43°sin13°的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案